Skip to main content
Log in

Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We evaluate Vickers hardness and true instrumented indentation test (IIT) hardness of 24 metals over a wide range of mechanical properties using just IIT parameters by taking into account the real contact morphology beneath the Vickers indenter. Correlating the conventional Vickers hardness, indentation contact morphology, and IIT parameters for the 24 metals reveals relationships between contact depths and apparent material properties. We report the conventional Vickers and true IIT hardnesses measured only from IIT contact depths; these agree well with directly measured hardnesses within ±6% for Vickers hardness and ±10% for true IIT hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Bulychev, V.P. Alekhin, M.K. Shorshorov, A.P. Ternovskii, G.D. Shnyrev Determining Young’s modulus from the indentor penetration diagram. Zavod. Lab. 41, 1137 (1975)

    CAS  Google Scholar 

  2. M.F. Doerner, W.D. Nix A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986)

    Google Scholar 

  3. W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  4. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, Y.L. Shen Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007)

    CAS  Google Scholar 

  5. A.C. Fischer-Cripps A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000)

    CAS  Google Scholar 

  6. N.K. Mukhopadhyay, P. Paufler Micro- and nanoindentation techniques for mechanical characterisation of materials. Int. Mater. Rev. 51, 209 (2006)

    CAS  Google Scholar 

  7. J.S. Field, M.V. Swain Determining the mechanical-properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995)

    CAS  Google Scholar 

  8. C.A. Schuh Nanoindentation studies of materials. Mater. Today 9, 32 (2006)

    CAS  Google Scholar 

  9. D. Tabor Hardness of Metals (Clarendon Press, Oxford 1951)

    Google Scholar 

  10. A. Bolshakov, G.M. Pharr Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998)

    CAS  Google Scholar 

  11. A.C. Fischer-Cripps Nanoindentation (Springer, New York 2002)

    Google Scholar 

  12. W.C. Oliver, G.M. Pharr Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004)

    CAS  Google Scholar 

  13. Y.T. Cheng, C.M. Cheng Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004)

    Google Scholar 

  14. J.Y. Kim, S.K. Kang, J.R. Greer, D. Kwon Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Mater. 56, 3338 (2008)

    Article  CAS  Google Scholar 

  15. J.Y. Kim, S.K. Kang, J.J. Lee, J.I. Jang, Y.H. Lee, D. Kwon Influence of surface-roughness on indentation size effect. Acta Mater. 55, 3555 (2007)

    Article  CAS  Google Scholar 

  16. J.H. Ahn, D. Kwon Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect. J. Mater. Res. 16, 3170 (2001)

    Article  CAS  Google Scholar 

  17. S.H. Kim, B.W. Lee, Y. Choi, D. Kwon Quantitative determination of contact depth during spherical indentation of metallic materials—A FEM study. Mater. Sci. Eng., A 415, 59 (2006)

    Article  Google Scholar 

  18. J.Y. Kim, K.W. Lee, J.S. Lee, D. Kwon Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach. Surf. Coat. Technol. 201, 4278 (2006)

    Article  CAS  Google Scholar 

  19. E.C. Jeon, J.Y. Kim, M.K. Baik, S.H. Kim, J.S. Park, D. Kwon Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves. Mater. Sci. Eng., A 419, 196 (2006)

    Article  Google Scholar 

  20. B. Taljat, T. Zacharia, F. Kosel New analytical procedure to determine stress–strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998)

    Google Scholar 

  21. M. Dao, N. Chollacoop, Van K.J. Vliet, T.A. Venkatesh, S. Suresh Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001)

    Article  CAS  Google Scholar 

  22. N. Chollacoop, M. Dao, S. Suresh Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003)

    Article  CAS  Google Scholar 

  23. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, J.L. Hay On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001)

    Article  Google Scholar 

  24. S. Jayaraman, G.T. Hahn, W.C. Oliver, C.A. Rubin, P.C. Bastias Determination of monotonic stress–strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35, 365 (1998)

    Article  Google Scholar 

  25. Y.T. Cheng, C.M. Cheng Scaling relationships in conical indentation of elastic perfectly plastic solids. Int. J. Solids Struct. 36, 1231 (1999)

    Article  Google Scholar 

  26. A.E. Giannakipoulos, S. Suresh Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999)

    Article  Google Scholar 

  27. T.A. Venkatesh, Van K.J. Vliet, A.E. Giannakopoulos, S. Suresh Determination of elasto-plastic properties by instrumented sharp indentation: Guidelines for property extraction. Scr. Mater. 42, 833 (2000)

    Article  CAS  Google Scholar 

  28. J.L. Bucaille, S. Stauss, E. Felder, J. Michler Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003)

    Article  CAS  Google Scholar 

  29. K.D. Bouzakis, N. Michailidis Coating elastic-plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms. Thin Solid Films 469–470, 227 (2004)

    Article  Google Scholar 

  30. Y.T. Cheng, C.M. Cheng Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998)

    Article  CAS  Google Scholar 

  31. Y.T. Cheng, C.M. Cheng What is indentation hardness? Surf. Coat. Technol. 133–134, 417 (2000)

    Article  Google Scholar 

  32. J. Malzbendera, de G. With Indentation load–displacement curve, plastic deformation, and energy. J. Mater. Res. 17, 502 (2002)

    Article  Google Scholar 

  33. K.W. McElhaney, J.J. Vlassak, W.D. Nix Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998)

    Article  CAS  Google Scholar 

  34. J. Mencik, M.V. Swain Error associated with depth sensing micro-indentation. J. Mater. Res. 10, 1491 (1995)

    Article  CAS  Google Scholar 

  35. J. Alcala, A.C. Barone, M. Anglada The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater. 48, 3451 (2000)

    Article  CAS  Google Scholar 

  36. Y. Choi, H.S. Lee, D. Kwon Analysis of sharp-tip-indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects. J. Mater. Res. 19, 3307 (2004)

    Article  CAS  Google Scholar 

  37. Y.H. Lee, J.H. Hahn, S.H. Nahm, J.I. Jang, D. Kwon Investigations on indentation size effects using a pile-up corrected hardness. J. Phys. D: Appl. Phys. 41, 074027 (2008)

    Article  Google Scholar 

  38. ISO/FDIS 14577-1 Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters; Part 1, Test Method (International Organization for Standardization, Geneva, Switzerland 2002)

    Google Scholar 

  39. ASTM E8-04 Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, W, Conshohocken, PA 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SK., Kim, JY., Chan, PP. et al. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. Journal of Materials Research 25, 337–343 (2010). https://doi.org/10.1557/JMR.2010.0045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0045

Navigation