Skip to main content
Log in

Shear band multiplication aided by free volume underthree-point bending

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) alloy samples in both rod and plate geometry were prepared. Different free volume states were obtained through thermal treatment. The plastic deformation ability of the BMGs was investigated through both a three-point bending test and compression test. The three-point bending results reveal the important role of free volume content on the formation of multiple shear bands, as the shear band propagation can be efficiently stopped due to the existence of the stress gradient from the surface to the neutral plane. In compression, the sample size rather than free volume controls the shear banding behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Johnson Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999)

    Article  CAS  Google Scholar 

  2. A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000)

    Article  CAS  Google Scholar 

  3. W.H. Wang, C. Dong, C.H. Shek Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004)

    Article  CAS  Google Scholar 

  4. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, T.C. Hufnagel Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 (2001)

    Article  CAS  Google Scholar 

  5. Z.F. Zhang, J. Eckert, L. Schultz Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003)

    Article  CAS  Google Scholar 

  6. Z.F. Zhang, H. Zhang, X.F. Pan, J. Das, J. Eckert Effect of aspect ratio on the compressive deformation and fracture behavior of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 (2005)

    Article  CAS  Google Scholar 

  7. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)

    Article  CAS  Google Scholar 

  8. K.F. Yao, F. Ruan, Y.Q. Yang, N. Chen Superductile bulk metallic glass. Appl. Phys. Lett. 88, 122106 (2006)

    Article  CAS  Google Scholar 

  9. J. Schroers, W.L. Johnson Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004)

    Article  CAS  Google Scholar 

  10. A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari, A.L. Greer Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005)

    Article  CAS  Google Scholar 

  11. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)

    Article  CAS  Google Scholar 

  12. J.B. Qiang, W. Zhang, G.Q. Xie, A. Inoue Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Appl. Phys. Lett. 90, 231907 (2007)

    Article  CAS  Google Scholar 

  13. L.Y. Chen, Z.D. Fu, G.Q. Zhang, X.P. Hao, Q.K. Jiang, X.D. Wang, Q.P. Cao, H. Franz, Y.G. Liu, H.S. Xie, S.L. Zhang, B.Y. Wang, Y.W. Zeng, J.Z. Jiang New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008)

    Article  CAS  Google Scholar 

  14. Y.J. Huang, J. Shen, J.F. Sun Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919 (2007)

    Article  CAS  Google Scholar 

  15. W.F. Wu, Z. Han, Y. Li Size-dependent “malleable-to-brittle” transition in a bulk metallic glass. Appl. Phys. Lett. 93, 061908 (2008)

    Article  CAS  Google Scholar 

  16. Z. Han, W.F. Wu, Y. Li, Y.J. Wei, H.J. Gao An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009)

    Article  CAS  Google Scholar 

  17. S. Xie, E.P. George Size-dependent plasticity and fracture of a metallic glass in compression. Intermetallics 16, 485 (2008)

    Article  CAS  Google Scholar 

  18. P. Murali, U. Ramamurty Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005)

    Article  CAS  Google Scholar 

  19. M.E. Launey, R. Busch, J.J. Kruzic Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Acta Mater. 56, 500 (2008)

    Article  CAS  Google Scholar 

  20. N. Li, L. Liu, Q. Chen, J. Pan, K.C. Chan The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D: Appl. Phys. 40, 6055 (2007)

    Article  CAS  Google Scholar 

  21. F. Jiang, Y.L. Zhao, L.C. Zhang, S.B. Pan, Y.G. Zhou, L. He, J. Sun Dependence of ductility on free volume in a Cu–Zr-based metallic glass. Adv. Eng. Mater. 11, 177 (2009)

    Article  CAS  Google Scholar 

  22. Y. Yokoyama, K. Fukaura, A. Inoue Cast structure and mechanical properties of Zr–Cu–Ni–Al bulk glassy alloys. Intermetallics 10, 1113 (2002)

    Article  CAS  Google Scholar 

  23. I.I. Konovalov, V.A. Komissarov, A.A. Maslov, V.K. Orlov Bulk amorphous plate production by a casting process. J. Non-Cryst. Solids 205–207, 536 (1996)

    Article  Google Scholar 

  24. A. Slipenyuk, J. Eckert Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004)

    Article  CAS  Google Scholar 

  25. C. Nagel, K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, E. Faupel Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid. Phys. Rev. B 57, 10224 (1998)

    Article  CAS  Google Scholar 

  26. E. Pekarskaya, J.F. Löffler, W.L. Johnson Microstructural studies of crystallization of a Zr-based bulk metallic glass. Acta Mater. 51, 4045 (2003)

    Article  CAS  Google Scholar 

  27. A.V. Sergueeva, N.A. Mara, J.D. Kuntz, E.J. Lavernia, A.K. Mukherjee Shear band formation and ductility in bulk metallic glass. Philos. Mag. 85, 2671 (2005)

    Article  CAS  Google Scholar 

  28. S.X. Song, H. Bei, J. Wadsworth, T.G. Nieh Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813 (2008)

    Article  CAS  Google Scholar 

  29. L.C. Zhang, F. Jiang, D.H. Zhang, L. He, J. Sun, J.T. Fan, Z.F. Zhang In-situ precipitated nanocrystal beneficial to enhanced plasticity of Cu–Zr based bulk metallic glasses. Adv. Eng. Mater. 10, 943 (2008)

    Article  CAS  Google Scholar 

  30. A. Inoue, T. Zhang, T. Masumoto Reductilization of embrittled La–Al–Ni amorphous-alloys by viscous-flow deformation in a supercooled liquid region. J. Non-Cryst. Solids 156, 598 (1993)

    Article  Google Scholar 

  31. T.C. Hufnagel, El-P. Deiry, R.P. Vinci Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scr. Mater. 43, 1071 (2000)

    Article  CAS  Google Scholar 

  32. R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003)

    Article  CAS  Google Scholar 

  33. G. Ravichandran, A. Molinari Analysis of shear banding in metallic glasses under bending. Acta Mater. 53, 4087 (2005)

    Article  CAS  Google Scholar 

  34. F.F. Wu, Z.F. Zhang, S.X. Mao Size-dependent shear fracture and global tensile plasticity of metallic glass. Acta Mater. 57, 257 (2009)

    Article  CAS  Google Scholar 

  35. F.F. Wu, Z.F. Zhang, F. Jiang, J. Sun, J. Shen Multiplication of shear bands and ductility of metallic glass. Appl. Phys. Lett. 90, 191909 (2007)

    Article  CAS  Google Scholar 

  36. H. Bei, S. Xie, E.P. George Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006)

    Article  CAS  Google Scholar 

  37. K.M. Flores, R.H. Dauskardt Fracture and deformation of bulk metallic glasses and their composites. Intermetallics 12, 1025 (2004)

    Article  CAS  Google Scholar 

  38. Z.H. Han, L. He, Y.L. Hou, F. Jiang, J. Sun Understanding the mechanism for the embrittlement of a monolithic Zr-based bulk metallic glass by oxygen. Intermetallics 17, 553 (2009)

    Article  CAS  Google Scholar 

  39. K. Hajlaoui, A.R. Yavari, A. LeMoulec, W.J. Botta, F.G. Vaughan, J. Das, A.L. Greer, A. Kvick Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Cryst. Solids 353, 327 (2007)

    Article  CAS  Google Scholar 

  40. K. Hajlaoui, A.R. Yavari, J. Dasc, G. Vaughan Ductilization of BMGs by optimization of nanoparticle dispersion. J. Alloys Compd. 434–435, 6 (2007).

    Article  CAS  Google Scholar 

  41. C. Fan, R.T. Ott, T.C. Hufnagel Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002)

    Article  CAS  Google Scholar 

  42. F. Jiang, Z.B. Zhang, L. He, J. Sun, H. Zhang, Z.F. Zhang The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites. J. Mater. Res. 21, 2638 (2006)

    Article  CAS  Google Scholar 

  43. F. Jiang, Y.L. Zhao, L.C. Zhang, S.B. Pan, L. He, J. Sun, Y.G. Zhou The coupling effect of small nanocrystals and free volume on the ductility of Cu46Zr47Al7 bulk metallic glass alloy. Adv. Eng. Mater. 11, 374 (2009)

    Article  CAS  Google Scholar 

  44. W.J. Wright, R. Saha, W.D. Nix Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001)

    Article  CAS  Google Scholar 

  45. C.A. Schuh, T.G. Nieh A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003)

    Article  CAS  Google Scholar 

  46. K. Wang, T. Fujita, Y.Q. Zeng, N. Nishiyama, A. Inoue, M.W. Chen Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 56, 2834 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Jiang, F., Zhao, Y. et al. Shear band multiplication aided by free volume underthree-point bending. Journal of Materials Research 25, 283–291 (2010). https://doi.org/10.1557/JMR.2010.0028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0028

Navigation