Skip to main content
Log in

Order-to-disorder transformation in d-phase Sc4Zr3O12 induced by light ion irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polycrystalline d-phase Sc4Zr3O12 was irradiated with 200 keV Ne+ ions at cryogenic temperature to fluences ranging from 2 × 1018 to 1 × 1021 Ne/m2. Irradiation-induced structural evolution was examined by using grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy. An order-to-disorder (O-D) crystal structure transformation (from an ordered d-phase to a disordered, fluorite phase) was observed to initiate by a fluence of 2 × 1018 Ne/m2, corresponding to a peak ballistic damage dose of ~0.075 displacements per atom. This displacement damage dose is much lower than the O-D transformation dose threshold found in previous heavy ion irradiation experiments on d-Sc4Zr3O12 [J.A. Valdez et al., Nucl. Instrum. Methods B250, 148 (2006); K.E. Sickafus et al., Nat. Mater.6, 217 (2007)]. In this study, we contrast the O-D transformation efficiency of the light Ne ions used in these experiments, to the heavy (Kr) ions used previously, and interpret the differences in terms of enhanced damage efficiency for light ions (greater fraction of surviving defects per defect produced). To better quantify this surviving defect phenomenon, we also present new, additional ion irradiation results on d-Sc4Zr3O12, obtained from 300 keV Kr2+ and 100 keV He+ ion irradiation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Degueldre, M. Pouchon, M. Doebeli, K.E. Sickafus, K. Hojou, G. Ledergerber, Abolhassani-S. Dadras Behaviour of implanted xenon in yttria-stabilised zirconia as inert matrix of a nuclear fuel. J. Nucl. Mater. 289, 115 (2001)

    Article  CAS  Google Scholar 

  2. C. Degueldre, J-M Paratte Basic properties of a zirconia-based fuel material for light water reactors. Nucl. Technol. 123, 21 (1998)

    Article  CAS  Google Scholar 

  3. W.J. Weber, R.C. Ewing, C.R.A. Catlow, de la T. Rubia Diaz, L.W. Hobbs, C. Kinoshita, Matzke Hj., A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkle Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434 (1998)

    Article  CAS  Google Scholar 

  4. S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, Godivan K.V. Kutty Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999)

    Article  CAS  Google Scholar 

  5. K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, T. Hartmann Radiation tolerance of complex oxides. Science 289, 748 (2000)

    CAS  Google Scholar 

  6. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A.R. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, B.P. Uberuaga Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6, 217 (2007)

    Article  CAS  Google Scholar 

  7. J.A. Valdez, M. Tang, K.E. Sickafus Radiation damage effects in delta-Sc4Zr3O12 irradiated with Kr2+ ions under cryogenic conditions. Nucl. Instrum. Methods B 250, 148 (2006)

    Article  CAS  Google Scholar 

  8. H.J. Rossell Crystal-structures of some fluorite-related M7O12 compounds. J. Solid State Chem. 19, 103 (1976)

    Article  CAS  Google Scholar 

  9. J.F. Ziegler, J.P. Biersack, U. Littmark The Stopping and Range of Ions in Solids (Pergamon Press, New York 1985)

    Google Scholar 

  10. A. Guinier X-Ray Diffraction In Crystals, Imperfect Crystals and Amorphous Bodies (Dover Publications, Inc, New York 1994)

    Google Scholar 

  11. G. Lim, W. Parrish, C. Ortiz, M. Bellotto, M. Hart Grazing incidence synchrotron x-ray diffraction method for analyzing thin films. J. Mater. Res. 2, 471 (1987)

    Article  CAS  Google Scholar 

  12. H. Dosch Evanescent absorption in kinematic surface Bragg diffraction. Phys. Rev. B: Condens. Matter 35, 2137 (1987)

    Article  CAS  Google Scholar 

  13. D. Simeone, J.L. Bechade, D. Gosset, A. Chevarier, P. Daniel, H. Pilliaire, G. Baldinozzi Investigation on the zirconia phase transition under irradiation. J. Nucl. Mater. 281, 171 (2000)

    Article  CAS  Google Scholar 

  14. D. Rafaja, V. Valvoda, A. Vaclav, J. Perry, J.R. Treglio Depth profile of residual stress in metal-ion implanted TiN coatings. Surf. Coat. Technol. 92, 135 (1997)

    Article  CAS  Google Scholar 

  15. K.E. Sickafus, R.W. Grimes, S.M. Corish, A.R. Cleave, C.R. Stanek, B.P. Uberuaga, J.A. Valdez Layered Atom Arrangements in Complex Materials Los Alamos Series Report # LA-14205 (2006)

    Google Scholar 

  16. Red’V.P. ko, L.M. Lopato Crystalline structure of M4Zr3O12 and M4Hf3O12 compounds (M-rare earth). Neorg. Mater. 27, 1905 (1991)

    Google Scholar 

  17. M.R. Thornber, D.J.M. Bevan, J. Graham Mixed oxides of type MO2(fluorite)-M2O3.3. Crystal structures of intermediate phases ZR5SC2O13 and ZR3SC4O12. Acta Crystallogr., Sect. B: Struct. Sci. 24, 1183 (1968)

    Article  CAS  Google Scholar 

  18. L.M. Lopato, Red’V.P. ko, G.I. Gerasimyuk, A.V. Shevchenko Synthesis and properties of M4Zr3O12 and M4Hf3O12 compounds (M-rare earth). Neorg. Mater. 27, 1718 (1991)

    CAS  Google Scholar 

  19. Phase Diagrams for Zirconium and Zirconia Systems edited by H.M. Ondik and H.F. McMurdie (The American Ceramic Society, Westerville, OH 1998)

    Google Scholar 

  20. S.J. Zinkle Microstructure of ion-irradiated ceramic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 91, 234 (1994)

    Article  CAS  Google Scholar 

  21. S.J. Zinkle Effect of irradiation spectrum on the microstructural evolution in ceramic insulators. J. Nucl. Mater. 219, 113 (1995)

    Article  CAS  Google Scholar 

  22. S.J. Zinkle Effect of irradiation spectrum on the microstructure of ion-irradiated Al2O3 Microstructure of Irradiated Materials edited by I.M. Robertson L.E. Rehn S.J. Zinkle and W.J. Phythian (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, PA 1995) 287

    Google Scholar 

  23. S.J. Zinkle Irradiation spectrum and ionization-induced diffusion effects in ceramics Microstructure Evolution During Irradiation edited by I.M. Robertson G.S. Was L.W. Hobbs and T. Diaz de la Rubia (Mater. Res. Soc. Symp. Proc. 439, Warrendale, PA 1997) 667

    Google Scholar 

  24. J. Lindhard, M. Scharff, H.E. Schiott Range concepts and heavy ion ranges. Mat. Fys. Medd. Dan Vid. Selsk. 33, 3 (1963)

    Google Scholar 

  25. R.S. Averback, R. Benedek, K.L. Merkle Ion-irradiation studies of the damage function of copper and silver. Phys. Rev. B 18, 4156 (1978)

    Article  CAS  Google Scholar 

  26. R.S. Averback Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49 (1994)

    Article  CAS  Google Scholar 

  27. W.J. Weber Alpha-irradiation damage in CeO2, UO2 and PuO2. Radiat. Eff. Defects Solids 83, 145 (1984)

    Article  CAS  Google Scholar 

  28. W.J. Weber, R.K. Eby, R.C. Ewing Accumulation of structural defects in ion-irradiated Ca2Nd8(SiO4)6O2. J. Mater. Res. 6, 1334 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, Y., Tang, M. et al. Order-to-disorder transformation in d-phase Sc4Zr3O12 induced by light ion irradiation. Journal of Materials Research 25, 248–254 (2010). https://doi.org/10.1557/JMR.2010.0027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0027

Navigation