Skip to main content
Log in

Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) was doped with the combination of several metal ions including platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni). The doped TiO2 materials were synthesized by standard sol-gel methods with doping levels of 0.1 to 0.5 at.%. The resulting materials were characterized by x-ray diffraction (XRD), BET surface-area measurement, scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (DRS). The visible light photocatalytic activity of the codoped samples was quantified by measuring the rate of the oxidation of iodide, the rate of degradation of methylene blue (MB), and the rate of oxidation of phenol in aqueous solutions at ? > 400 nm. 0.3 at.% Pt-Cr-TiO2 and 0.3 at.% Cr-V-TiO2 showed the highest visible light photocatalytic activity with respect to MB degradation and iodide oxidation, respectively. However, none of the codoped TiO2 samples were found to have enhanced photocatalytic activity for phenol degradation when compared to their single-doped TiO2 counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)

    CAS  Google Scholar 

  2. M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffman Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem. B 108, 17269 (2004)

    CAS  Google Scholar 

  3. G. Sauthier, E. Gyorgy, A. Figueras Investigation of nitrogen-doped TiO2 thin films grown by reactive pulsed laser deposition. J. Mater. Res. 23, 2340 (2008)

    CAS  Google Scholar 

  4. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330 (2003)

    CAS  Google Scholar 

  5. W.Y. Su, Y.F. Zhang, Z.H. Li, L. Wu, X.X. Wang, J.Q. Li, X.Z. Fu Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir 24, 3422 (2008)

    CAS  Google Scholar 

  6. G. Liu, Z.G. Chen, C.L. Dong, Y.N. Zhao, F. Li, G.Q. Lu, H.M. Cheng Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework. J. Phys. Chem. B 110, 20823 (2006)

    CAS  Google Scholar 

  7. X.T. Hong, Z.P. Wang, W.M. Cai, F. Lu, J. Zhang, Y.Z. Yang, N. Ma, Y.J. Liu Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 17, 1548 (2005)

    CAS  Google Scholar 

  8. J.K. Zhou, L. Lv, J.Q. Yu, H.L. Li, P.Z. Guo, H. Sun, X.S. Zhao Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J. Phys. Chem. C 112, 5316 (2008)

    CAS  Google Scholar 

  9. X.W. Zhang, L.C. Lei One step preparation of visible-light responsive Fe-TiO2 coating photocatalysts by MOCVD. Mater. Lett. 62, 895 (2008)

    CAS  Google Scholar 

  10. X.W. Zhang, M.H. Zhou, L.C. Lei Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7, 427 (2006)

    CAS  Google Scholar 

  11. W.Y. Teoh, R. Amal, L. Madler, S.E. Pratsinis Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal. Today 120, 203 (2007)

    CAS  Google Scholar 

  12. K. Iketani, R.D. Sun, M. Toki, K. Hirota, O. Yamaguchi Sol-gel-derived VxTi1–xO2 films and their photocatalytic activities under visible light irradiation. Mater. Sci. Eng., B 108, 187 (2004)

    Google Scholar 

  13. S. Klosek, D. Raftery Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 105, 2815 (2001)

    CAS  Google Scholar 

  14. J.C.S. Wu, C.H. Chen A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol., A 163, 509 (2004)

    CAS  Google Scholar 

  15. E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca Visible-light induced water cleavage in colloidal solutions of chromium-doped titanium-dioxide particles. J. Am. Chem. Soc. 104, 2996 (1982)

    CAS  Google Scholar 

  16. M. Anpo, Y. Ichihashi, M. Takeuchi, H. Yamashita Design and development of unique titanium oxide photocatalysts capable of operating under visible light irradiation by an advanced metal ion-implantation method. Sci. Technol. Catal. 121, 305 (1999)

    CAS  Google Scholar 

  17. D.H. Kim, K.S. Lee, Y.S. Kim, Y.C. Chung, S.J. Kim Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J. Am. Ceram. Soc. 89, 515 (2006)

    CAS  Google Scholar 

  18. S. Kim, S.J. Hwang, W.Y. Choi Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B 109, 24260 (2005)

    CAS  Google Scholar 

  19. H. Park, W. Choi, M.R. Hoffmann Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 18, 2379 (2008)

    CAS  Google Scholar 

  20. E. Bae, W. Choi Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol. 37, 147 (2003)

    CAS  Google Scholar 

  21. W.Y. Choi, A. Termin, M.R. Hoffmann The role of metal-ion dopants in quantum-sized TiO2—Correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)

    Google Scholar 

  22. J.H. Chen, M.S. Yao, X.L. Wang Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. J. Nano. Res. 10, 163 (2008)

    CAS  Google Scholar 

  23. Di A. Paola, Garcia-E. Lopez, S. Ikeda, G. Marci, B. Ohtani, L. Palmisano Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today 75, 87 (2002)

    Google Scholar 

  24. S.S. Srinivasan, J. Wade, E.K. Stefanakos, Y. Goswami Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2. J. Alloys Compd. 424, 322 (2006)

    CAS  Google Scholar 

  25. A. Ahmad, J.A. Shah, S. Buzby, S.I. Shah Structural effects of codoping of Nb and Sc in titanium dioxide nanoparticles. Eur. J. Inorg. Chem. 948 (2008)

    Google Scholar 

  26. H. Kato, A. Kudo Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 106, 5029 (2002)

    CAS  Google Scholar 

  27. R. Niishiro, H. Kato, A. Kudo Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem. Chem. Phys. 7, 2241 (2005)

    CAS  Google Scholar 

  28. R. Niishiro, R. Konta, H. Kato, W.J. Chun, K. Asakura, A. Kudo Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation. J. Phys. Chem. C 111, 17420 (2007)

    CAS  Google Scholar 

  29. D.E. Huang, S.J. Liao, S.Q. Quan, L. Liu, Z.J. He, J.B. Wan, W.B. Zhou Preparation and characterization of anatase N-F-codoped TiO2 sol and its photocatalytic degradation for formaldehyde. J. Mater. Res. 22, 2389 (2007)

    CAS  Google Scholar 

  30. D. Li, H. Haneda, S. Hishita, N. Ohashi Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization. Chem. Mater. 17, 2588 (2005)

    CAS  Google Scholar 

  31. J.G. Yu, M.H. Zhou, B. Cheng, X.J. Zhao Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders. J. Mol. Catal. A: Chem. 246, 176 (2006)

    CAS  Google Scholar 

  32. H.Y. Liu, L. Gao (Sulfur,nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst. J. Am. Ceram. Soc. 87, 1582 (2004)

    CAS  Google Scholar 

  33. Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J.N. Kondo, M. Hara, K. Domen Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mater. Res. 19, 2100 (2004)

    CAS  Google Scholar 

  34. Y. Sakatani, J. Nunoshige, H. Ando, K. Okusako, H. Koike, T. Takata, J.N. Kondo, M. Hara, K. Domen Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2. Chem. Lett. 32, 1156 (2003)

    CAS  Google Scholar 

  35. C.C. Pan, J.C.S. Wu Visible-light response Cr-doped TiO2–xNx photocatalysts. Mater. Chem. Phys. 100, 102 (2006)

    CAS  Google Scholar 

  36. S. Kim, S-K Lee Visible light-induced photocatalytic oxidation of 4-chlorophenol and dichloroacetate in intrided Pt-TiO2 aqueous suspensions. J. Photochem. Photobiol., A 203, 145 (2009)

    CAS  Google Scholar 

  37. Z.Y. Zhao, Q.J. Liu Designed highly effective photocatalyst of anatase TiO2 codoped with nitrogen and vanadium under visible-light irradiation using first-principles. Catal. Lett. 124, 111 (2008)

    CAS  Google Scholar 

  38. Y. Wang, Y.L. Meng, H.M. Ding, Y.K. Shan, X. Zhao, X.Z. Tang A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. J. Phys. Chem. C 112, 6620 (2008)

    CAS  Google Scholar 

  39. Z.Q. He, X. Xu, S. Song, L. Xie, J.J. Tu, J.M. Chen, B. Yan A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine: An application in the degradation of oxalic acid. J. Phys. Chem. C 112, 16431 (2008)

    CAS  Google Scholar 

  40. R.D. Shannon Revised effective ionic-radii and systematic studies of interatomic distances in halides and charcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976)

    Google Scholar 

  41. N. Serpone, D. Lawless, J. Disdier, J.M. Herrmann Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloid—Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10, 643 (1994)

    CAS  Google Scholar 

  42. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai Analysis of electronic structures of 3D transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909 (2002)

    CAS  Google Scholar 

  43. A. Kudo, R. Niishiro, A. Iwase, H. Kato Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem. Phys. 339, 104 (2007)

    CAS  Google Scholar 

  44. V.N. Kuznetsov, N. Serpone Visible light absorption by various titanium dioxide specimens. J. Phys. Chem. B 110, 25203 (2006)

    CAS  Google Scholar 

  45. N. Serpone Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287 (2006)

    CAS  Google Scholar 

  46. A.A. Lisachenko, V.N. Kuznetsov, M.N. Zakharov, R.V. Mikhailov The interaction of O2, NO, and N2O with surface defects of dispersed titanium dioxide. Kinet. Catal. 45, 189 (2004)

    CAS  Google Scholar 

  47. V.N. Kuznetsov, T.K. Krutitskaya Nature of color centers in reduced titanium dioxide. Kinet. Catal. 37, 446 (1996)

    CAS  Google Scholar 

  48. R.A. Spurr, H. Myers Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Park, H. & Hoffmann, M.R. Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. Journal of Materials Research 25, 149–158 (2010). https://doi.org/10.1557/JMR.2010.0024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0024

Navigation