Skip to main content
Log in

Enhanced photocatalytic disinfection of microorganisms by transition-metal-ion-modification of nitrogen-doped titanium oxide

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this article, palladium modification and silver modification were used as examples to demonstrate the disinfection effects on microorganisms in aqueous environment of photocatalytic transition-metal-ion-modified nitrogen-doped titanium oxide (TiON/M) materials. Transition metal ion modification was applied to TiON to take advantage of the coupling between transition metal ion addition and TiON semiconductor matrix under visible light illumination. The coupling promotes the separation of electron and hole pairs produced by photon excitation, thus it could reduce the intrinsic charge carrier recombination from anion-doping, which largely limits the photoactivity of TiON under visible light illumination. Large enhancements on the hydroxyl radical production and the photocatalytic disinfection efficiency on microorganisms under visible light illumination were observed for TiON with both palladium and silver modifications. The superior photocatalytic performance under visible light illumination suggests that the transition metal ion modification is an effective approach to reduce the massive charge carrier recombination from anion-doping and to enhance the photocatalytic performance of anion-doped TiO2. The resulting photocatalytic materials have the potential for a wide range of environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RincóA.G. n, C. Pulgarin, N. Adler, P. Peringer Interaction between E. coli inactivation and DBP-precursors–dihydroxybenzene isomers–in the photocatalytic process of drinking-water disinfection with TiO2. J. Photochem. Photobiol., A 139, 233 (2001)

    Google Scholar 

  2. W.J. Cooper, E. Cadavid, M.G. Nickelsen, K.J. Lin, C.N. Kurucz, T.D. Waite Removing THMs from drinking water using high-energy electron-beam irradiation. J. Am. Water Works Assn. 85, 106 (1993)

    Google Scholar 

  3. Al-Bastaki: N.M. Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chem. Eng. Process. 43, 935 (2004)

    CAS  Google Scholar 

  4. A. Fujishima, K. Honda Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    CAS  Google Scholar 

  5. N.S. Frank, A.J. Bard Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81, 1484 (1977)

    CAS  Google Scholar 

  6. T. Matsunaga, T.R. Tomoda, T. Nakajima, H. Wake Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211 (1985)

    CAS  Google Scholar 

  7. M.A. Fox, M.T. Dulay Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993)

    CAS  Google Scholar 

  8. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)

    Google Scholar 

  9. A. Hagfeldt, M. Graetzel Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995)

    CAS  Google Scholar 

  10. H. Einaga, S. Futamura, T. Ibusuki Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Phys. Chem. Chem. Phys. 1, 4903 (1999)

    CAS  Google Scholar 

  11. A. Fujishima, T.N. Rao, D.A. Tryk Titanium dioxide photocatalysis. J. Photochem. Photobiol., A 1, 1 (2000)

    CAS  Google Scholar 

  12. M. Sokmen, F. Candan, Z. Sumer Disinfection of E. coli by the Ag–TiO2/UV system: Lipidperoxidation. J. Photochem. Photobiol., A 143, 241 (2001)

    CAS  Google Scholar 

  13. P.S.M. Dunlop, J.A. Byrne, N. Manga, B.R. Eggins The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol., A 148, 355 (2002)

    CAS  Google Scholar 

  14. E.J. Wolfrum, J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest, W.A. Jacoby Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36, 3412 (2002)

    CAS  Google Scholar 

  15. J.C. Yu, W.K. Ho, J. Lin, K.Y. Yip, P.K. Wong Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296 (2003)

    CAS  Google Scholar 

  16. K. Sunada, T. Watanabe, K. Hashimoto Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ. Sci. Technol. 37, 4785 (2003)

    CAS  Google Scholar 

  17. M. Cho, H.M. Chung, W.Y. Choi, J.Y. Yoon Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71, 270 (2005)

    CAS  Google Scholar 

  18. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)

    CAS  Google Scholar 

  19. H. Irie, Y. Watanabe, K. Hashimoto Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders. J. Phys. Chem. B 107, 5483 (2003)

    CAS  Google Scholar 

  20. T. Lindgren, J.M. Mwabora, E. Avendaño, J. Jonsson, C.G. Granqvist, S.E. Lindquist Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107, 5709 (2003)

    CAS  Google Scholar 

  21. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003)

    CAS  Google Scholar 

  22. S.W. Yang, L. Gao New method to prepare nitrogen-doped titanium dioxide and its photocatalytic activities irradiated by visible light. J. Am. Ceram. Soc. 87, 1803 (2004)

    CAS  Google Scholar 

  23. G.R. Torres, T. Lindgren, J. Lu, C-G Granqvist, S.E. Lindquist Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. J. Phys. Chem. B 108, 5995 (2004)

    CAS  Google Scholar 

  24. R. Nakamura, T. Tanaka, Y. Nakato Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 108, 10617 (2004)

    CAS  Google Scholar 

  25. S.U.M. Khan, Al-M. Shahry, W.B. Ingler Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002)

    CAS  Google Scholar 

  26. S. Sakthivel, H. Kisch Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003)

    CAS  Google Scholar 

  27. H. Irie, Y. Watanabe, K. Hashimoto Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772 (2003)

    CAS  Google Scholar 

  28. H. Wang, J.P. Lewis Effects of dopant states on photoactivity in carbon-doped TiO2. J. Phys. Condens. Matter 17, L209 (2005)

    CAS  Google Scholar 

  29. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002)

    CAS  Google Scholar 

  30. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330 (2003)

    CAS  Google Scholar 

  31. T. Ohno, T. Mitsui, M. Matsumura Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett. 32, 364 (2003)

    CAS  Google Scholar 

  32. T. Yamamoto, F. Yamashita, I. Tanaka, F. Matsubara, A. Muramatsu Electronic states of sulfur doped TiO2 by first-principles calculations. Mater. Trans. 45, 1987 (2004)

    CAS  Google Scholar 

  33. J.C. Yu, W. Ho, J. Yu, H. Yip, P. Wong, J. Zhao Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 39, 1175 (2005)

    CAS  Google Scholar 

  34. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002)

    CAS  Google Scholar 

  35. A.K. Ghosh, H.P. Maruska Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J. Electrochem. Soc. 124, 1516 (1977)

    CAS  Google Scholar 

  36. W. Choi, A. Termin, M.R. Hoffmann The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)

    Google Scholar 

  37. Anpo: M. Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light. Catal. Surv. Jpn. 1, 169 (1997)

    CAS  Google Scholar 

  38. V. Subramanian, E. Wolf, P.V. Kamat Semiconductor-metal composite nanostructures: To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105, 11439 (2001)

    CAS  Google Scholar 

  39. S.I. Shah, W. Li, C-P Huang, O. Jung, C. Ni Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc. Natl. Acad. Sci. USA 99, 6482 (2002)

    CAS  Google Scholar 

  40. Q. Li, W. Liang, J.K. Shang Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films. Appl. Phys. Lett. 90, 063109 (2007)

    Google Scholar 

  41. Q. Li, R. Xie, E.A. Mintz, J.K. Shang Enhanced visible-light photocatalytic degradation of humic acid by palladium oxide-sensitized nitrogen-doped titanium oxide. J. Am. Ceram. Soc. 90, 3863 (2007)

    CAS  Google Scholar 

  42. Q. Li, M.A. Page, B.J. Marinãs, J.K. Shang Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light. Environ. Sci. Technol. 42, 6148 (2008)

    CAS  Google Scholar 

  43. Q. Li, Y.W. Li, P. Wu, R. Xie, J.K. Shang Palladium oxide nanoparticles on nitrogen-doped titanium oxide: Accelerated photocatalytic disinfection and post-illumination catalytic “memory.” Adv. Mater. 20, 3717 (2008)

    CAS  Google Scholar 

  44. P. Wu, R. Xie, J.K. Shang Enhanced visible-light photocatalytic disinfection of bacterial spores by palladium-modified nitrogen-doped titanium oxide. J. Am. Ceram. Soc. 91, 2957 (2008)

    CAS  Google Scholar 

  45. M.A. Daley, D. Tandon, J. Economy, E.J. Hippo Elucidating the porous structure of activated carbon fibers using direct and indirect methods. Carbon 34, 1191 (1996)

    CAS  Google Scholar 

  46. J. Tauc, R. Grigorovici, A. Vancu Optical properties and electronic structures of amorphous germanium. Phys. Status Solidi 15, 627 (1966)

    CAS  Google Scholar 

  47. R. Schuch, D. Nelson, V.A. Fischetti A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884 (2002)

    CAS  Google Scholar 

  48. J.B. Cross, R.P. Currier, D.J. Torraco, L.A. Vanderberg, G.L. Wagner, P.D. Gladen Killing of Bacillus spores by aqueous dissolved oxygen, ascorbic acid, and copper ions. Appl. Environ. Microbiol. 69, 2245 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ku Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Wu, P., Xie, R. et al. Enhanced photocatalytic disinfection of microorganisms by transition-metal-ion-modification of nitrogen-doped titanium oxide. Journal of Materials Research 25, 167–176 (2010). https://doi.org/10.1557/JMR.2010.0005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0005

Navigation