Skip to main content
Log in

Chemical binding of pyridine on TiO2 nanocrystalline film and its photoelectrochemical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aiming to bind molecules without O-containing groups such as the–OH or–COOH functional groups, a new two-step method involving thermal activation and followed by an in situ chemical reaction was suggested, and the binding of the pyridine molecule on TiO2 nanocrystalline films was realized. UV-Vis, FTIR, and XPS characterizations revealed that pyridine molecules are chemically linked to the TiO2 surface by forming Ti-pyridine bonds. Mott-Schottky measurements indicated that the binding of pyridine results in a positive shift of the flat band potential for TiO2 nanocrystalline film, which is attributed to the alternating surface dipole moment of TiO2 nanocrystals upon pyridine binding. Electrochemical and photoelectrochemical investigations indicated that the binding of pyridine on TiO2 nanocrystalline film has high electrochemical and photoelectrochemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan, M. Graetzel A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  2. S. Pang, T.F. Xie, Y. Zhang, X. Wei, M. Yang, D.J. Wang, Z.L. Du Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells. J. Phys. Chem. C 111, 18417 (2007)

    Article  CAS  Google Scholar 

  3. H.Z. Zhuang, S.B. Xue Effect of ammoniating temperature on morphologic and optical properties of GaN nanostructured materials. Mater. Lett. 62, 23 (2008)

    Article  CAS  Google Scholar 

  4. C. Cheng, J.H. Lee, K.H. Lim, H.Z. Massoud, Q.H. Liu 3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices. J. Comput. Phys. 227, 455 (2007)

    Article  Google Scholar 

  5. C.D. Valentin, G. Pacchioni, A. Selloni Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys. Rev. B: Condens. Matter 70, 085116 (2004)

    Article  Google Scholar 

  6. W. Zhao, W. Ma, C. Chen, Z. Shuai Efficient degradation of toxic organic pollutants with Ni2O3/TiO2–xBx under visible irradiation. J. Am. Chem. Soc. 126, 4782 (2004)

    Article  CAS  Google Scholar 

  7. J.G. Li, C.T. Cheng, L. Di, H. Haneda, T. Ishigaki Monodispersed spherical particles of brookite-type TiO2: Synthesis, characterization, and photocatalytic property. J. Am. Ceram. Soc. 87, 1358 (2004)

    Article  CAS  Google Scholar 

  8. J.J. Wu, C.C. Yu Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 (2004)

    Article  CAS  Google Scholar 

  9. Y. Lei, L.D. Zhang, J.C. Fan Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001)

    Article  CAS  Google Scholar 

  10. J.X. Zhang, D.L. Jiang, W. Lars, G. Peter Binary solvent mixture for tape casting of TiO2 sheets. J. Eur. Ceram. Soc. 24, 147 (2004)

    Article  Google Scholar 

  11. R.J. Nussbaumer, W. Caseri, T. Tervoort, P. Smith Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof. J. Nanopart. Res. 4, 319 (2002)

    Article  CAS  Google Scholar 

  12. A. Kay, M. Gratzel Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272 (1993)

    Article  CAS  Google Scholar 

  13. J. Moser, S. Punchihewa, P.P. Infelta, M. Gratzel Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7, 3012 (1991)

    Article  CAS  Google Scholar 

  14. Y. Nakato, J.G. Jia, M. Ishida, K. Morisawa, M. Fujitani, R. Hinogami, S. Yae Efficient solar to chemical conversion by one chip of n-type silicon with surface asymmetrization. Electrochem. Solid-State Lett. 1, 71 (1998)

    Article  CAS  Google Scholar 

  15. T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, M. Kinjo Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids. J. Am. Chem. Soc. 128, 9288 (2006)

    Article  CAS  Google Scholar 

  16. V. Subramanian, E.E. Wolf, P.V. Kamat Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004)

    Article  CAS  Google Scholar 

  17. G. Ramakrishna, A.K. Singh, D.K. Palit, H.N. Ghosh Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin. J. Phys. Chem. B 108, 1701 (2004)

    Article  CAS  Google Scholar 

  18. R. Asahi, T. Morkawa, T. Ohawaki, Y. Taga Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  19. S. Sakthivel, H. Kisch Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003)

    Article  CAS  Google Scholar 

  20. A. Hagfeldt, M. Gratzel Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000)

    Article  CAS  Google Scholar 

  21. A. Hagfeldt, M. Gratzel Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995)

    Article  CAS  Google Scholar 

  22. M.C. Thurnauer, T. Rajh, D.M. Tiede Surface modification of TiO2: Correlation between structure, charge separation and reduction properties. Acta Chem. Scand. 51, 610 (1997)

    Article  CAS  Google Scholar 

  23. R. Rodriguez, M.A. Blesa, A.E. Regazzoni Surface complexation at the TiO2 (anatase)/aqueous solution interface: Chemisorption of catechol. J. Colloid Interface Sci. 177, 122 (1996)

    Article  CAS  Google Scholar 

  24. T. Rajh, A.E. Ostfin, O.I. Micic, D.M. Tiede, M.C. Thurnauer Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: An EPR study. J. Phys. Chem. 100, 4538 (1996)

    Article  CAS  Google Scholar 

  25. T. Rajh, D.M. Tiede, M.C. Thurnauer Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy. J. Non-Cryst. Solids 205–207, 815 (1996)

    Article  Google Scholar 

  26. T. Rajh, J.M. Nedeljkovic, L.X. Chen, O. Poluektov, M.C. Thurnauer Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J. Phys. Chem. B 103, 3515 (1999)

    Article  CAS  Google Scholar 

  27. T. Rajh, L.X. Chen, K. Lukas, T. Liu, M.C. Thurnauer, D.M. Tiede Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 106, 10543 (2002)

    Article  CAS  Google Scholar 

  28. M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Colfen, M. Antonietti Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem. Mater. 16, 1202 (2004)

    Article  CAS  Google Scholar 

  29. S. Ruhle, M. Greenshtein, S-G Chen, A. Merson, H. Pizem, C.S. Sukenik, D. Cahen, A. Zaban Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B 109, 18907 (2005)

    Article  Google Scholar 

  30. A.P. Xagas, M.C. Bernard, A. GoffH-L., N. Spyrellis, Z. Loizos, P. Falaras Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid. J. Photochem. Photobiol., A 132, 115 (2000)

    Article  CAS  Google Scholar 

  31. M.Y. Li, S.J. Feng, S.B. Fang, X.R. Xiao, X.P. Li, X.W. Zhou, Y. Lin The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells. Electrochim. Acta 52, 4858 (2007)

    Article  CAS  Google Scholar 

  32. J. Moser, S. Punchihewa, P.P. Infelta, M. Gratzel Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7, 3012 (1991)

    Article  CAS  Google Scholar 

  33. M. Primet, P. Pichat, M.V. Mathieu Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. J. Phys. Chem. 75, 1216 (1971)

    Article  CAS  Google Scholar 

  34. M. Barber, J.A. Connor, M.F. Guest, I.H. Hillier, M. Schwarz, M. Stacey Bonding in some donor–acceptor complexes involving boron trifluoride. Study by means of ESCA and molecular orbital calculations. J. Chem. Soc., Faraday Trans. II 69, 551 (1973)

    Article  CAS  Google Scholar 

  35. M. Camalli, F. Caruso, G. Mattogno, E. Rivarola Adducts of tin(IV) and organotin(IV) derivatives with 2,2’-azopyridine II. Crystal and molecular structure of SnMe2Br2AZP and further Mössbauer and photoelectronic spectroscopic studies. Inorg. Chim. Acta 170, 225 (1990)

    Article  CAS  Google Scholar 

  36. F. Cao, G. Oskam, P.C. Searson, J.M. Stipkala, T.A. Heimer, F. Farazad, G.J. Meyer Electrical and optical properties of porous nanocrystalline TiO2 films. J. Phys. Chem. 99, 11974 (1995)

    Article  CAS  Google Scholar 

  37. M. Mrowetz, W. Blacerski, A.J. Colussi, M.R. Hoffmann Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem. B 108, 17269 (2004)

    Article  CAS  Google Scholar 

  38. B.B. DeMore, W.S. Wilcox, J.H. Goldstein Microwave spectrum and dipole moment of pyridine. J. Chem. Phys. 22, 876 (1954)

    Article  CAS  Google Scholar 

  39. E. Gerald Hyperfine structure in O17H and the OH dipole moment. Phys. Rev. 130, 669 (1963)

    Article  Google Scholar 

  40. H. Tokudome, M. Miyauchi Electrochromism of titanate-based nanotubes. Angew. Chem. Int. Ed. 44, 1974 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguang Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Jia, J., Zhou, X. et al. Chemical binding of pyridine on TiO2 nanocrystalline film and its photoelectrochemical properties. Journal of Materials Research 25, 32–38 (2010). https://doi.org/10.1557/JMR.2010.0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0003

Navigation