Skip to main content
Log in

Photoelectrochemical properties of n-type KTaO3 single crystals in alkaline electrolytes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Semiconducting KTaO3 single crystals were investigated as a model potential photoanode for hydrogen production using photoelectrochemical cells. To modify the electronic properties of KTaO3 by reducing the band gap and thereby increasing the absorption of light at longer wavelengths, the crystals were doped during growth. A wide range of dopant elements was used that consisted primarily of transition metal atoms. Most of the crystals exhibited n-type behavior with carrier concentrations from 4 × 1018 to 2.6 × 1020 cm–3. The position of the band edges indicated that the crystals were thermodynamically capable of water dissociation. External quantum yield measurements revealed that the samples were photoactive up to a wavelength of ~350 nm. The indirect band gap and a parameter denoted as E1 that is related to the direct band edge of the semiconductor, were found to be essentially the same for all of the samples. These results indicate that the various dopants and treatments did not produce changes in the KTaO3 electronic structure that were sufficient to significantly modify the behavior of KTaO3 in a PEC cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.E. Paulauskas, J.E. Katz, G.E. Jellison Jr., N.S. Lewis, L.A. Boatner Growth, characterization, and electrochemical properties of doped n-type KTaO3 photoanodes. J. Electrochem. Soc. 156, B580 (2009)

    Article  CAS  Google Scholar 

  2. G.E. Jellison Jr., I. Paulauskas, L.A. Boatner, D.J. Singh Optical functions of KTaO3 as determined by spectroscopic ellipsometry and comparison with band-structure calculations. Phys. Rev. B 74, 155130 (2006)

    Article  Google Scholar 

  3. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrel Photo-electrochemical hydrogen generation from water using solar energy: Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002)

    Article  CAS  Google Scholar 

  4. K. Rajeshwar Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 37, 765 (2007)

    Article  CAS  Google Scholar 

  5. M.X. Tan, P.E. Laibinis, S.T. Nguyen, J.M. Kesselman, C.E. Stanton, N.S. Lewis Principles and Applications of Semiconductor Photoelectrochemistry edited by K.D. Karlin Vol. 41 Progress in Inorganic Chemistry (John Wiley & Sons, New York 1994)

  6. A. Fujishima, K. Honda Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  7. X.Y. Li, P.L. Yue, C. Kutal Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles. New J. Chem. 27, 1264 (2003)

    Article  CAS  Google Scholar 

  8. E. Piera, Tejedor-M.I. Tejedor, M.E. Zorn, M.A. Anderson Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst. Appl. Catal., B 46, 671 (2003)

    Article  CAS  Google Scholar 

  9. S.X. Wu, Z. Ma, Y.N. Qin, F. He, L.S. Jia, Y.J. Khang XPS study of copper doping TiO2 photocatalyst. Acta Phys. Chim. Sin. 19, 967 (2003)

    Article  CAS  Google Scholar 

  10. D. Dvoranova, V. Brezova, M. Mazur, M.A. Malati Investigations of metal-doped titanium dioxide photocatalysts. Appl. Catal., B 37, 91 (2002)

    Article  CAS  Google Scholar 

  11. S.T. Martin, C.L. Morrison, M.R. Hoffmann Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J. Phys. Chem. 98, 13695 (1994)

    Article  CAS  Google Scholar 

  12. S.H. Wemple Some transport properties of oxygen-deficient single-crystal potassium tantalate (KTaO3). Phys. Rev. 137, 1575 (1965)

    Article  CAS  Google Scholar 

  13. L.S. Senhouse, M.V. Depaolis, T.C. Loomis Calcium concentration vs. net ionized donor concentration in single-crystal KTaO3. Appl. Phys. Lett. 8, 173 (1966)

    Article  CAS  Google Scholar 

  14. D.M. Hannon Electron paramagnetic resonance of Fe3+ and Ni3+ in KTaO3. Phys. Rev. 164, 366 (1967)

    Article  CAS  Google Scholar 

  15. M.M. Abraham, L.A. Boatner, D.N. Olson, U.T. Höchli EPR studies of some fn and dn electronic impurities in KTaO3 single-crystals. J. Chem. Phys. 81, 2528 (1984)

    Article  CAS  Google Scholar 

  16. D.M. Hannon Electron paramagnetic resonance of Mn2+ in KTaO3. Phys. Rev. B: Condens. Matter 3, 2153 (1971)

    Article  Google Scholar 

  17. I.N. Geifman Electron-paramagnetic resonance of Ti3+ in KTaO3. Phys. Status Solidi B 85, K5 (1978)

    Article  CAS  Google Scholar 

  18. A.J. Bard, L.R. Faulkner Electrochemical Methods: Fundamentals and Applications 2nd ed (John Wiley & Sons, New York 2001) 369

    Google Scholar 

  19. S. Aravazhi, A. Tapponnier, D. Gunther, P. Gunter Growth and characterization of barium-doped potassium tantalate crystals. J. Cryst. Growth 282, 66 (2005)

    Article  CAS  Google Scholar 

  20. A.W. Bott Electrochemistry of semiconductors. Curr. Sep. 13, 87 (1998)

    Google Scholar 

  21. P.J. Boddy, D. Kahng, Y.S. Chen Oxygen evolution on potassium tantalate anodes. Electrochim. Acta 13, 1311 (1968)

    Article  CAS  Google Scholar 

  22. I.E. Paulauskas, J.E. Katz, G.E. Jellison Jr., N.S. Lewis, L.A. Boatner Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation. Thin Solid Films 516, 8175 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald E. Jellison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulauskas, I.E., Jellison, G.E. & Boatner, L.A. Photoelectrochemical properties of n-type KTaO3 single crystals in alkaline electrolytes. Journal of Materials Research 25, 52–62 (2010). https://doi.org/10.1557/JMR.2010.0001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0001

Navigation