Skip to main content
Log in

Thermal coarsening of nanoporous gold: Melting or recrystallization

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermal coarsening of nanoporous Au was examined and compared with the thermal instability of Au nanoparticles. The nanoporous Au was coarsened at temperatures far below the melting temperature of Au nanoparticles, which possess sizes similar to the nanoligaments. Differential scanning calorimetry characterization of nanoporous Au exhibited an exothermal peak around 470 K. These results suggest that solid-state process like recrystallization, rather than melting, is responsible for the thermal coarsening of nanoporous Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.

Similar content being viewed by others

REFERENCES

  1. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001)

    Article  CAS  Google Scholar 

  2. A.J. Forty, P. Durkin: A micro-morphological study of the dissolution of silver-gold alloys in nitric-acid. Philos. Mag. A 42, 295 (1980)

    Article  CAS  Google Scholar 

  3. L.H. Qian, M.W. Chen: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007)

    Article  Google Scholar 

  4. M. Hakamada, M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007)

    Article  CAS  Google Scholar 

  5. D. Kramer, R.N. Viswanath, J. Weissmüller: Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 4, 793 (2004)

    Article  CAS  Google Scholar 

  6. Z. Liu, P.C. Searson: Single nanoporous gold nanowire sensors. J. Phys. Chem. B 110, 4318 (2006)

    Article  CAS  Google Scholar 

  7. C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007)

    Article  CAS  Google Scholar 

  8. R. Li, K. Sieradzki: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992)

    Article  CAS  Google Scholar 

  9. A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007)

    Article  CAS  Google Scholar 

  10. E. Seker, J.T. Gaskins, H. Bart-Smith, J. Zhu, M.L. Reed, G. Zangari, R. Kelly, M.R. Begley: The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Mater. 55, 4593 (2007)

    Article  CAS  Google Scholar 

  11. C.R.M. Wronski: The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731 (1967)

    Article  CAS  Google Scholar 

  12. Ph. Buffat, J-P. Borel: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976)

    Article  CAS  Google Scholar 

  13. P.R. Couchman, W.A. Jesser: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481 (1977)

    Article  CAS  Google Scholar 

  14. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, 99 (1996)

    Article  CAS  Google Scholar 

  15. M.E. Toimil Molares, A.G. Balogh, T.W. Cornelius, R. Neumann, C. Trautmann: Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 85, 5337 (2004)

    Article  CAS  Google Scholar 

  16. H.S. Shin, J. Yu, J.Y. Song: Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 91, 173106 (2007)

    Article  Google Scholar 

  17. H. Li, J.M. Biser, J.T. Perkins, S. Dutta, R.P. Vinci, H.M. Chan: Thermal stability of Cu nanowires on a sapphire substrate. J. Appl. Phys. 103, 024315 (2008)

    Article  Google Scholar 

  18. K.K. Nanda, S.N. Sahu, S.N. Behera: Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002)

    Article  Google Scholar 

  19. K.S. Kim, J.Y. Song, E.K. Chung, J.K. Park, S.H. Hong: Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires. Mech. Mater. 38, 119 (2006)

    Article  CAS  Google Scholar 

  20. M.J. Rost, D.A. Quist, J.W.M. Frenken: Grain, growth, and grooving. Phys. Rev. Lett. 91, 026101 (2003)

    Article  CAS  Google Scholar 

  21. S. Okuda, F. Tang: Thermal stability of nanocrystalline gold prepared by gas deposition method. Nanostruct. Mater. 6, 585 (1995)

    Article  Google Scholar 

  22. M. Hakamada, M. Mabuchi: Microstructural evolution in thermal and acid treatments in nanoporous gold. Mater. Lett. 62, 483 (2008)

    Article  CAS  Google Scholar 

  23. U. Klement, U. Erb, A.M. El-Sherik, K.T. Aust: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Hakamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakamada, M., Mabuchi, M. Thermal coarsening of nanoporous gold: Melting or recrystallization. Journal of Materials Research 24, 301–304 (2009). https://doi.org/10.1557/JMR.2009.0037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0037

Navigation