Skip to main content
Log in

Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Optimized compositions for bulk metallic glass (BMG) formation have been determined for the Cu−Hf binary and Cu−Hf−Al ternary systems. The Cu−Hf−Al BMG-forming composition region is identified to correlate with the (L → Cu10Hf7 + CuHf2 + CuHfAl) eutectic reaction. The eutectic temperature is reduced by nearly 50 K relative to that of the binary eutectic, demonstrating the significant role of the third element Al in stabilizing the liquid. The fragility parameter D* of the Cu55Hf45 binary and Cu49Hf42Al9 ternary supercooled liquid was determined from relaxation time measurements, indicating that Al incorporation also leads to a “stronger” liquid. The combination of these thermodynamic and kinetic effects is responsible for the dramatic enhancement of glass-forming ability from the Cu−Hf binary to the Cu−Hf−Al ternary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 10 42 1999

    CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000

    CAS  Google Scholar 

  3. A.L. Greer, E. Ma: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 2007

    CAS  Google Scholar 

  4. Y. Li, S.J. Poon, G.J. Shiflet, J. Xu, D.H. Kim, J.F. Löffler: Formation of bulk metallic glasses and their composites. MRS Bull. 32, 624 2007

    CAS  Google Scholar 

  5. H.W. Kui, A.L. Greer, D. Turnbull: Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615 1984

    CAS  Google Scholar 

  6. Y. He, R.B. Schwarz, J.I. Archuleta: Bulk glass formation in the Pd–Ni–P system. Appl. Phys. Lett. 69, 1861 1996

    CAS  Google Scholar 

  7. A. Inoue, T. Zhang, T. Masumoto: Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater. Trans., JIM 31, 425 1990

    CAS  Google Scholar 

  8. T. Zhang, A. Inoue, T. Masumoto: Amorphous Zr–Al–TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 1991

    CAS  Google Scholar 

  9. L.Q. Xing, P. Ochin: Investigation of the effects of Al and Ti on the glass forming ability of Zr–Cu–Al and Zr–Ti–Al–Cu–Ni alloys through their solidification characteristics. Acta Mater. 45, 3765 1997

    CAS  Google Scholar 

  10. D. Wang, H. Tan, Y. Li: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 2005

    CAS  Google Scholar 

  11. Q. Jing, Y. Zhang, D. Wang, Y. Li: A study of the glass forming ability in ZrNiAl alloys. Mater. Sci. Eng., A 441, 106 2006

    Google Scholar 

  12. A. Wiest, G. Duan, M.D. Demetriou, L.A. Wiest, A. Peck, G. Kaltenboeck, B. Wiest, W.L. Johnson: Zr–Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability. Acta Mater. 56, 2625 2008

    CAS  Google Scholar 

  13. A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto: Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 1991

    CAS  Google Scholar 

  14. H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma: Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252 2005

    CAS  Google Scholar 

  15. H. Men, D.H. Kim: Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 2003

    CAS  Google Scholar 

  16. Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu: Critical size and strength of the best bulk metallic glass former in the Mg–Cu–Gd ternary system. Scr. Mater. 56, 161 2007

    CAS  Google Scholar 

  17. C.Y. Lin, H.Y. Tien, T.S. Chin: Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett. 86, 162501 2005

    Google Scholar 

  18. M. Stoica, K. Hajlaoui, A. Lemoulec, A.R. Yavari: New ternary Fe-based bulk metallic glass with high boron content. Philos. Mag. Lett. 86, 267 2006

    CAS  Google Scholar 

  19. H. Choi-Yim, D.H. Xu, W.L. Johnson: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 2003

    CAS  Google Scholar 

  20. L. Zhang, M.J. Zhuo, J. Xu: Enhancing bulk metallic glass formation in Ni–Nb–Sn-based alloys via substitutional alloying with Co and Hf. J. Mater. Res. 23, 688 2008

    CAS  Google Scholar 

  21. W.L. Johnson: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225-227, 35 1996

    Google Scholar 

  22. D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, C. Garland: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 2004

    CAS  Google Scholar 

  23. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 2004

    CAS  Google Scholar 

  24. A. Inoue, W. Zhang: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans. 45, 584 2004

    CAS  Google Scholar 

  25. G. Duan, D.H. Xu, W.L. Johnson: High copper content bulk glass formation in bimetallic Cu–Hf system. Metall. Mater. Trans. A 36, 455 2005

    Google Scholar 

  26. L. Xia, W.H. Li, S.S. Fang, B.C. Wei, Y.D. Dong: Binary Ni–Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 2006

    Google Scholar 

  27. P. Villars: Factors govering crystal structures in Intermetallic Compounds: Principles and Practice, Vol. 1, edited by Westbrook, JH, Fleischer, R.L. (New York: Wiley, 1995), p. 228.

    Google Scholar 

  28. P.R. Subramanian, D.E. Laughlin: Binary Alloy Phase Diagrams, edited by Massalski, T.B. Okamoto, H. Subramanian, P.R. Kacprzak, L. (ASM International Publishing, 1990), p. 1416.

  29. A. Inoue, W. Zhang: Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K. J. Mater. Res. 18, 1435 2003

    CAS  Google Scholar 

  30. P. Jia, H. Guo, Y. Li, J. Xu, E. Ma: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scr. Mater. 54, 2165 2006

    CAS  Google Scholar 

  31. A. Inoue, W. Zhang, T. Zhang, K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001

    CAS  Google Scholar 

  32. C.L. Dai, J.W. Deng, Z.X. Zhang, J. Xu: Cu–Zr–Ti ternary bulk metallic glasses correlated with (L → Cu8Zr3 + Cu10Zr7) univariant eutectic reaction. J. Mater. Res. 23, 5 1249 2008

    CAS  Google Scholar 

  33. C.L. Dai, H. Guo, Y. Li, J. Xu: A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction. J. Non-Cryst. Solids 354, 3659 2008

    CAS  Google Scholar 

  34. W. Zhang, A. Inoue: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system. J. Mater. Res. 21, 234 2006

    CAS  Google Scholar 

  35. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 1995

    CAS  Google Scholar 

  36. R. Busch, E. Bakke, W.L. Johnson: Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 1998

    CAS  Google Scholar 

  37. L. Shadowspeaker, R. Busch: On the fragility of Nb–Ni-based and Zr-based bulk metallic glasses. Appl. Phys. Lett. 85, 2508 2004

    CAS  Google Scholar 

  38. L. Bsenko: Crystallographic data for intermediate phases in the copper-zirconium and copper-hafnium systems. J. Less-Common Met. 40, 365 1975

    CAS  Google Scholar 

  39. JCPDS No. 18-0440. International Center for Diffraction Data: Newton Square, PA, 1995

    Google Scholar 

  40. H. Biloni, W.J. Boettinger: Solidification Physical Metallurgy 4th ed., edited by Cahn, R.W. Haasen, P. Elsevier Science BV, Switzerland 1996 763

  41. D.C. Hofmann, G. Duan, W.L. Johnson: TEM study of structural evolution in a copper mold cast Cu46Zr54 bulk metallic glass. Scr. Mater. 54, 1117 2006

    CAS  Google Scholar 

  42. Y. Shen, E. Ma, J. Xu: A group of Cu(Zr)-based BMGs with critical diameter in the range of 12 to 18 mm. J. Mar. Sci. Technol. 24, 149 2008

    CAS  Google Scholar 

  43. Handbook of Ternary Alloy Phase Diagrams edited by Villars, P. Prince, A. Okamoto, H. ASM International Publishing 1995 3219

    Google Scholar 

  44. Q. Zheng, J. Xu, E. Ma: High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J. Appl. Phys. 102, 113519 2007

    Google Scholar 

  45. I. Gallino, M.B. Shah, R. Busch: Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy. Acta Mater. 55, 1367 2007

    CAS  Google Scholar 

  46. Z.W. Zhu, H.F. Zhang, D.G. Pan, W.S. Sun, Z.Q. Hu: Fabrication of binary Ni–Nb bulk metallic glass with high strength and compressive plasticity. Adv. Eng. Mater. 8, 953 2006

    CAS  Google Scholar 

  47. Y. Yokoyama, H. Fredriksson, H. Yasuda, M. Nishijima, A. Inoue: Glassy solidification criterion of Zr50Cu40Al10 alloy. Mater. Trans. 48, 1363 2007

    CAS  Google Scholar 

  48. W.J. Boettinger: Growth kinetic limitations during rapid solidification Rapidly Solidified Amorphous and Crystalline Alloys edited by Kear, B.H. Giessen, B.C. Cohen, M. Elsevier Science Publishing 1982 15

  49. Fundamentals of Solidification 4th revised ed., edited by Kurz, W. Fisher, D.J Trans Tech Publications Ltd. Switzerland 1998 93

    Google Scholar 

  50. Y. Li: Bulk metallic glasses: Eutectic coupled zone and amorphous formation. JOM 57, 60 2005

    CAS  Google Scholar 

  51. R. Busch, J. Schroers, W.H. Wang: Thermodynamics and kinetics of bulk metallic glass. MRS Bull. 32, 620 2007

    CAS  Google Scholar 

  52. X.H. Lin, W.L. Johnson: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 1995

    CAS  Google Scholar 

  53. K. Ohsaka, S.K. Chung, W.K. Rhim, A. Peker, D. Scruggs, W.L. Johnson: Specific volumes of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy in the liquid, glass, and crystalline states. Appl. Phys. Lett. 70, 726 1997

    CAS  Google Scholar 

  54. C.C. Hays, J. Schroers, W.L. Johnson, T.J. Rathz, R.W. Hyers, J.R. Rogers, M.B. Robinson: Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3. Appl. Phys. Lett. 79, 1605 2001

    CAS  Google Scholar 

  55. R. Busch, W. Liu, W.L. Johnson: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134 1998

    CAS  Google Scholar 

  56. A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto: Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans., JIM 33, 937 1992

    CAS  Google Scholar 

  57. O.N. Senkov: Correlation between fragility and glass forming ability of metallic alloys. Phys. Rev. B 76, 104202 2007

    Google Scholar 

  58. Z.X. Zhang, C.L. Dai, J. Xu: Complete composition tunability of Cu(Ni)–Ti–Zr alloys for bulk metallic glass formation. J. Mater. Sci. Technol. 25, 2009 (in press)

Download references

Acknowledgments

We gratefully acknowledge the stimulating discussion with Professors E. Ma and Y. Li and assistance in phase identification from B.Q. Li. This work was supported by the National Natural Science Foundation of China under Grants No. 50671105 and National Basic Research Program of China (973 Program) under contract No. 2007CB613906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, P., Xu, J. Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys. Journal of Materials Research 24, 96–106 (2009). https://doi.org/10.1557/JMR.2009.0014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0014

Navigation