Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Size-controlled spinel iron oxide (SIO) nanoparticle/organic hybrid was synthesized in situ from iron (III) allylacetylacetonate (IAA) at around 80 °C. The formation of SIO particles chemically bound with organics was confirmed by infrared and x-ray photoelectron spectroscopy. The sizes of SIO nanoparticles in the hybrids were monodispersed and ranged from 7 to 23 nm under controlled hydrolysis conditions. The hybrid including SIO particles of 7.3 nm was superparamagnetic, whereas those dispersed with particles above 11 nm were ferrimagnetic. The specific absorption rate (SAR) value was dependent upon the magnetic properties of the hybrid at 100 Oe. The SAR was 15.2 W g−1 in a 230 kHz alternating magnetic field and 100 Oe when the crystallite size of SIO particle in the hybrid was 16 nm. The temperatures of agars dispersed with hybrid powders of 5 and 8 mg ml−1 reached the optimum temperature (42 °C) for 17 and 8 min, respectively. The increase in temperature was controlled in terms of the strength of magnetic field. The simulation of heat transfer in the agar phantom model revealed that the suitable temperature distribution for therapy was attained from 15 to 20 min at 230 kHz and 100 Oe.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

References

  1. 1

    T.J. Yoon, J.S. Kim, B.G. Kim, K.N. Yu, M.H. Cho, J.K. Lee: Multifunctional nanoparticles processing a “magnetic motor effect” for drug or gene delivery. Angew. Chem. Int. Ed. 44, 1068 2005

    CAS  Article  Google Scholar 

  2. 2

    J.A. Frank, B.R. Miller, A.S. Arbab, H.A. Zywicke, E.K. Jordan, B.K. Lewis, L.H. Bryant, J.W.M. Bulte: Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxide and transfection agents. Radiology 228, 480 2003

    Article  Google Scholar 

  3. 3

    S. Mornet, S. Vasseur, F. Grasset, E. Duguet: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161 2004

    CAS  Article  Google Scholar 

  4. 4

    L.E. Gerweck: Modification of cell lethality at elevated temperatures the pH effect. Radiat. Res. 70, 224 1977

    CAS  Article  Google Scholar 

  5. 5

    R. Cavaliere, E.C. Ciocatto, B.C. Ciovanella, C. Heidelberger, R.O. Johnson, M. Marcottini, B. Mondovi, G. Moricca, A. Rossi-Fanelli: Selective heat sensitivity of cancer cells—Biomedical and clinical studies. Cancer 20, 1351 1967

    CAS  Article  Google Scholar 

  6. 6

    J.P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.C. Bacri, F. Gazeau: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628 2007

    CAS  Article  Google Scholar 

  7. 7

    D.H. Han, J.P. Wang, H.L. Luo: Crystallite size effect on saturation magnetization of fine ferrite ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176 1994

    CAS  Article  Google Scholar 

  8. 8

    S. Chikazumi: Physics of Ferromagnetism 2nd ed. Oxford Univ. Press Oxford, UK 1997 204

    Google Scholar 

  9. 9

    D.K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15, 1617 2003

    CAS  Article  Google Scholar 

  10. 10

    S. Sun, H. Zeng: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 2002

    CAS  Article  Google Scholar 

  11. 11

    A. Cabañas, M. Poliakoff: The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408 2001

    Article  Google Scholar 

  12. 12

    Y. Hayashimoto, W. Sakamoto, T. Yogo: Synthesis of nickel zinc ferrite nanoparticle/organic hybrid from metalorganics. J. Mater. Res. 22, 1967 2007

    Article  Google Scholar 

  13. 13

    K. Hayashi, W. Sakamoto, T. Yogo: In situ synthesis of lithium ferrite nanoparticle/polymer hybrid. J. Mater. Res. 22, 974 2007

    CAS  Article  Google Scholar 

  14. 14

    S. Nakamura, W. Sakamoto, T. Yogo: In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. J. Mater. Res. 21, 1336 2006

    CAS  Article  Google Scholar 

  15. 15

    S. Nakamura, W. Sakamoto, T. Yogo: In situ synthesis of nickel ferrite nanoparticle/organic hybrid. J. Mater. Res. 20, 1590 2005

    CAS  Article  Google Scholar 

  16. 16

    T. Yogo, T. Nakamura, W. Sakamoto, S. Hirano: Synthesis of magnetic particle/organic hybrid from metalorganic compounds. J. Mater. Res. 14, 2855 1999

    CAS  Article  Google Scholar 

  17. 17

    H.A. Tayim, M. Sabri: Synthesis of some olefin-substituted metal acetylacetonates. Inorg. Nucl. Chem. Lett. 9, 753 1973

    CAS  Article  Google Scholar 

  18. 18

    B.D. Cullity: Elements of X-ray Diffraction 2nd ed. Addison-Wesley Reading, MA 1978 284

    Google Scholar 

  19. 19

    R.E. Rosensweig: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 2002

    CAS  Article  Google Scholar 

  20. 20

    M. Ishii, M. Nakahira, T. Yamanaka: Infrared absorption and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11, 209 1972

    CAS  Article  Google Scholar 

  21. 21

    JCPDS No. 1906 29 International Center for Diffraction Data Newton Square, PA 1967

  22. 22

    J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li: Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. Part A 80, 333 2007

    Article  Google Scholar 

  23. 23

    P. Mills, J.L. Sullivan: A study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 16, 723 1983

    CAS  Article  Google Scholar 

  24. 24

    T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada: In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195 1999

    CAS  Article  Google Scholar 

  25. 25

    N.S. McIntyre, D.G. Zetaruk: X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521 1977

    CAS  Article  Google Scholar 

  26. 26

    E.J.W. Verwey, P.W. Haayman, F.C. Romeijn: Physical properties and cation arrangement of oxide with spinel structures. J. Chem. Phys. 15, 181 1947

    CAS  Article  Google Scholar 

  27. 27

    J.B. Yang, X.D. Zhou, W.B. Yelon, W.J. James, Q. Cai, K.V. Gopalakrishnan, S.K. Malik, X.C. Sun, D.E. Nikles: Magnetic and structural studies of the Verwey transition in Fe3−δO4 nanoparticles. J. Appl. Phys. 95, 7540 2004

    CAS  Article  Google Scholar 

  28. 28

    A.H. Morrish: The Physical Principles of Magnetism John Wiley & Sons New York 1965 360

    Google Scholar 

  29. 29

    P. Drake, H.J. Cho, P.S. Shih, C.H. Kao, K.F. Lee, C.H. Kuo, X.Z. Lin, Y.J. Lin: Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem. 17, 4914 2007

    CAS  Article  Google Scholar 

  30. 30

    N.A. Brusentsov, V.V. Gogosov, T.N. Brusentsova, A.V. Sergeev, N.Y. Jurchenko, A.A. Kuznetsov, O.A. Kuznetsov, L.I. Shumakov: Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225, 113 2001

    CAS  Article  Google Scholar 

  31. 31

    R. Hergt, W. Andrä, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, H.G. Schmidt: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745 1998

    CAS  Article  Google Scholar 

  32. 32

    X. Wang, H. Gu, Z. Yang: The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 293, 334 2005

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshinobu Yogo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayashi, K., Shimizu, T., Asano, H. et al. Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia. Journal of Materials Research 23, 3415–3424 (2008). https://doi.org/10.1557/JMR.2008.0417

Download citation