Spherical indentation of a membrane on an elastic half-space

Abstract

A number of physiological systems involve contact or indentation of solids with tensed surface layers. In this paper the contact problem of spherical indentation of a linear elastic solid, covered with a tensed membrane is addressed. Semianalytical solutions are obtained relating indentation force to contact radius, as well as contact radius to depth. Good agreement is found between derived equations and results from finite element method (FEM) simulations. In addition, effect of membrane on subsurface stresses is shown quantitatively and compared favorably to FEM results. This work is applicable to mechanical property assessment of a number of biological systems.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1

    R. Szilard: Theory and Analysis of Plates: Classical and Numerical Methods Prentice-Hall Englewood Cliffs, NJ 1973

    Google Scholar 

  2. 2

    E.A. Zamir L.A. Taber: On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng.—Trans. ASME 126, 276 2004

    Article  Google Scholar 

  3. 3

    S.J. Lai-Fook, T.A. Wilson, R.E. Hyatt J.R. Rodarte: Elastic-constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508 1976

    CAS  Article  Google Scholar 

  4. 4

    M.A. Hajji: Indentation of a membrane on an elastic half space. J. Appl. Mech.—Trans. ASME 45, 320 1978

    Article  Google Scholar 

  5. 5

    A. Gouldstone, R.E. Brown, J.P. Butler S.H. Loring: Stiffness of the pleural surface of the chest wall is similar to that of the lung. J. Appl. Physiol. 95, 2345 2003

    Article  Google Scholar 

  6. 6

    I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965

    Article  Google Scholar 

  7. 7

    H. Hertz: Ueber die beruehrung fester elastische Koerper (On the contact of elastic solids). Journal fur die reine und angewandte Mathematik 92, 156 1882

    Google Scholar 

  8. 8

    W.H. Yang K.H. Hsu: Indentation of a circular membrane. J. Appl. Mech.—Trans. ASME 38, 227 1971

    Article  Google Scholar 

  9. 9

    S. Timoshenko J.N. Goodier: Theory of Elasticity 3rd ed. McGraw-Hill New York, NY 1969

    Google Scholar 

  10. 10

    M.A. Hajji: Indentation of a membrane on an elastic half space with application to material testing of inflated lung lobes Ph.D. Thesis, University of Minnesota, 1978

    Google Scholar 

  11. 11

    A.C. Ugural: Stresses in Plates and Shells 2nd ed. McGraw Hill Boston, MA 1999

    Google Scholar 

  12. 12

    ABAQUS Theory manual, version 6.2 Hibbitt, Karlsson, and Sorensen Inc. Pawtucket, RI 2001

  13. 13

    D. Stamenovic: Mechanical-properties of pleural membrane. J. Appl. Physiol. 57, 1189 1984

    CAS  Article  Google Scholar 

  14. 14

    K.L. Johnson: Contact Mechanics Cambridge University Press New York, NY 1985

    Book  Google Scholar 

Download references

Acknowledgment

JHK and AG gratefully acknowledge the NSF Faculty Early Career Award CMS 0449268 for supporting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew Gouldstone.

Appendices

Appendix A

Modification constant b in Eq. (6)

$$b = {A_1} - {{{A_2}} \over {{{\left( {1 + {A_3}\,\cdot\,{T_{\rm{o}}}\left( {1 - v} \right)/{\mu }} \right)}^{1/{A_4}}}}}$$

Appendix B

II (ro), I2(ro), L1(ro), L2(ro), M in Eqs. (22) to (26)

$${I_1}\left( {{r^{\rm{o}}}} \right) = \int_{\rm{o}}^\infty {{{\left[ {\int_{\rm{o}}^1 {{{\left( {1 - {{{r^{{\rm{o}}2}}} \over {{b^2}}}} \right)}^{1/2}}{r^{\rm{o}}}{J_{\rm{o}}}\left( {k{r^{\rm{o}}}} \right)d{r^{\rm{o}}}} } \right]} \over {\left[ {1 + epsilonk} \right]}}{J_{\rm{o}}}\left( {k{r^{\rm{o}}}} \right)dk} $$

(b is modification factor in Appendix A)

$${ {{I_2}\left( {{r^{\rm{o}}}} \right) = \int_{\rm{0}}^\infty {{{\left[ {\int_{\rm{o}}^1 {\left( {1 - {{{r^{{\rm{o}}2}}} \over {{b^2}}}} \right){r^{\rm{o}}}{J_{\rm{o}}}\left( {k{r^{\rm{o}}}} \right)d{r^{\rm{o}}}} } \right]} \over {\left[ {1 + \epsilon{k}} \right]}}k{J_{\rm{o}}}\left( {k{r^{\rm{o}}}} \right)dk\,\,,} }{{L_1}\left( {{r^{\rm{o}}}} \right) = \int_{\rm{0}}^\infty {{{{J_1}\left( k \right)} \over {k\left[ {1 + \epsilon{k}} \right]}}{J_{\rm{o}}}\left( {k{r^{\rm{o}}}} \right)dk,\,\,} }{{L_2}\left( {{r^{\rm{o}}}} \right) = \int_{\rm{0}}^\infty {{{{J_1}\left( k \right)} \over {k\left[ {1 + \epsilon{k}} \right]}}k{J_{\rm{o}}}\left( {k{r^{\rm{o}}}} \right)dk} \,\,\,,}{M = \int_{\rm{0}}^1 {{{\left( {1 - {{{r^{{\rm{o}}2}}} \over {{b^2}}}} \right)}^{1/2}}2{\pi}}{r^{\rm{o}}}d{r^{\rm{o}}},} }{\epsilon = {{{T_{\rm{o}}}} \over {{\mu }a}\left( {1 - v} \right),}{{p_0} = {{4a{\mu}} \over {{\pi }R\left( {1 - v} \right)}}}}$$

Appendix C

Displacement and stress distribution underneath indenter

Here,

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J.H., Gouldstone, A. Spherical indentation of a membrane on an elastic half-space. Journal of Materials Research 23, 2212–2220 (2008). https://doi.org/10.1557/JMR.2008.0278

Download citation