Skip to main content
Log in

Mechanism of the interfacial reaction between cation-deficient La0.56Li0.33TiO3 and metallic lithium at room temperature

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We used x-ray diffractometry (XRD), x-ray photoelectron spectrometry (XPS), and secondary-ion mass spectrometry (SIMS) to investigate the mechanism of the interfacial room-temperature (RT) chemical reaction between cation-deficient La0.56Li0.33TiO3 solid electrolytes and metallic lithium anodes in all-solid-state lithium batteries. A stoichiometric mixture of La2O3, Li2CO3, and TiO2 powders was calcined at 1250 °C for 8 h to obtain a single perovskite structure of La0.56Li0.33TiO3. When this La0.56Li0.33TiO3 sample and lithium were placed in contact at room temperature for 24 h, the phase of the La0.56Li0.33TiO3 remained unchanged. The XPS results indicate that 12% of the tetravalent Ti4+ ions were converted into trivalent Ti3+ ions. The valence conversion and degree of conversion were limited by the structural rigidity of the host crystal. Our SIMS analysis suggests the existence of a local electric field near the contact surface and indicates that the 6Li+ isotope ions were inserted into the specimen through the effect of this field. The change in the electrical properties of La0.56Li0.33TiO3 supports this mechanism for the interfacial reaction. The ionic conductivities of the grain and total grain boundary decreased and increased, respectively, after the insertion of Li+, and the total electronic conductivity increased as a result of the presence of intervalence electron hopping between mixed Ti3+/Ti4+ states. The mechanism of the lithium-activated RT interfacial reaction is associated with the reduction of Ti4+ transition metal ions from tetravalent to trivalent states and the local-electric-field-induced Li+ insertion into La3+/Li+-site vacancies of La0.56Li0.33TiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
FIG. 5
FIG. 6
TABLE II.
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. L. Latie, G. Villeneuve, D. Conte G.L. Flem: Ionic conductivity of oxides with general formula LixLn1/3Nb1−xTixO3 (Ln = La, Nd). J. Solid State Chem. 51, 293 1984

    Article  CAS  Google Scholar 

  2. A.G. Belous, G.N. Novitskaya, S.V. Polyanetskaya Yu.I. Gornikov: Study of complex oxides with the composition La2/3−xLi3xTiO3. Inorg. Mater. 23, 412 1987

    Google Scholar 

  3. S. Stramare, V. Thangadurai W. Weppner: Lithium lanthanum titanates: A review. Chem. Mater. 15, 3974 2003

    Article  CAS  Google Scholar 

  4. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta M. Wakihara: High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689 1993

    Article  CAS  Google Scholar 

  5. A.G. Belous, O.N. Gavrilenko, E.V. Pashkova V.N. Mirnyi: Lithium-cation conduction and crystallochemical features of solid solutions La2/3−xLi3x◽4/3−2xNb2O6 with the structure of fault perovskite. Russ. J. Electrochem. 38, 425 2002

    Article  CAS  Google Scholar 

  6. M. Nakayama, H. Ikuta, Y. Uchimoto M. Wakihara: Ionic conduction of lithium in B-site substituted perovskite compounds, (Li0.1La0.3)yMxNb1−xO3 (M = Zr, Ti, Ta). J. Mater. Chem. 12, 1500 2002

    Article  CAS  Google Scholar 

  7. C.Y. Sun K.Z. Fung: Effect of Li addition on crystal structure and phase separation of highly defective (La,Li)TaO3 solid electrolytes. Solid State Commun. 123, 431 2002

    Article  CAS  Google Scholar 

  8. K. Mizumoto S. Hayashi: Lithium ion conduction in A-site deficient perovskites R1/4L1/4TaO3 (R = La, Nd, Sm and Y). Solid State Ionics 116, 263 1999

    Article  CAS  Google Scholar 

  9. G. Zhuang, K. Wang, P.N. Ross Jr.: XPS characterization of the reactions of Li with tetrahydrofuran and propylene carbonate. Surf. Sci. 387, 199 1997

    Article  CAS  Google Scholar 

  10. E.E. Hellstrom W. Van Gool: Constraints for the selection of lithium solid electrolytes. Rev. Chim. Miner. 17, 263 1980

    CAS  Google Scholar 

  11. C.H. Chen K. Amine: Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics 144, 51 2001

    Article  CAS  Google Scholar 

  12. C. Wang, P. Patil, A.J. Appleby, F.E. Little, M. Kesmez D.L. Cocke: In situ ionic/electronic conductivity measurement of La0.55Li0.35TiO3 ceramic at different Li insertion levels. J. Eletrochem. Soc. 151, A1196 2004

    Article  CAS  Google Scholar 

  13. M. Nakayama, T. Usui, Y. Uchimoto, M. Wakihara M. Yamamoto: Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li,Li)TiO3. J. Phys. Chem. B 109, 4135 2005

    Article  CAS  Google Scholar 

  14. M. Itoh, Y. Inaguma, W.H. Jung, L. Chen T. Nakamura: High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3(Ln = La, Pr, Nd, Sm). Solid State Ionics 70–71, 203 1994

    Article  Google Scholar 

  15. A.D. Robertson, S. Garcia Martin, A. Coats A.R. West: Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5−3xRE0.5+xTiO3: RE = La, Nd. J. Mater. Chem. 5, 1405 1995

    Article  CAS  Google Scholar 

  16. Y. Hirakoso, Y. Harada, J. Kuwano, Y. Saito, Y. Ishikawa T. Eguchi: Lithium ion conduction in the ordered and disordered phases of A-site deficient perovskite La0.56−xLi3x◽1/3−2xTiO3. Key Eng. Mater. 169−170, 209 1999

    Article  Google Scholar 

  17. J.L. Fourquet, H. Duroy M.P. Crosnier-Lopez: Structural and microstructural studies of the series La2/3−xLi3x◽1/3−2xTiO3. J. Solid State Chem. 127, 283 1996

    Article  CAS  Google Scholar 

  18. N.S.P. Bhuvanesh, O. Bohnké, H. Duroy, M.P. Crosnier-Lopez, J. Emery J.L. Fourquet: Topotactic H+/Li+ ion exchange on La2/3−xLi3xTiO3: New metastable perovskite phases La2/3−xTiO3−3x(OH)3x and La2/3−xTiO3−3x/2 obtained by further dehydration. Mater. Res. Bull. 33, 1681 1998

    Article  CAS  Google Scholar 

  19. M. Abe K. Uchino: X-ray study of the deficient perovskite La2/3TiO3. Mater. Res. Bull. 9, 147 1974

    Article  CAS  Google Scholar 

  20. Y. Inaguma, J.H. Sohn, I.S. Kim, M. Itoh T. Nakamura: Quantum paraelectricity in a perovskite La1/2Na1/2TiO3. J. Phys. Soc. Jpn. 61, 3831 1992

    Article  CAS  Google Scholar 

  21. M.T. Anderson, K.B. Greenwood, G.A. Taylor K.R. Poeppelmeier: B-cation arrangements in double perovskites. Prog. Solid State Chem. 22, 197 1993

    Article  CAS  Google Scholar 

  22. J.P. Miao, L.P. Li, H.J. Liu, D.P. Xu, Z. Lu, Y.B. Song, W.H. Su Y.G. Zheng: Structure characteristics and valance state study for La1−xNaxTiO3 synthesized under high-pressure and high-temperature conditions. Mater. Lett. 42, 1 2000

    Article  CAS  Google Scholar 

  23. G.K. Wertheim, R.L. Cohen, A. Rosencwaig J.H. Guggenheim: Electron Spectroscopy North-Holland Amsterdam 1972

    Google Scholar 

  24. D.L. Lam, B.W. Veal D.E. Ellis: Electronic structure of lanthanum perovskites with 3d transition elements. Phys. Rev. B 22, 5730 1980

    Article  CAS  Google Scholar 

  25. C.N.R. Rao D.D. Sarma: Study of electron states of solids by techniques of electron spectroscopy. J. Solid State Chem. 45, 14 1982

    Article  CAS  Google Scholar 

  26. F. Guillemot, M.C. Porté, C. Labrugère Ch. Baquey: Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: Interest for titanium biomedical applications. J. Colloid Interface Sci. 255, 75 2002

    Article  CAS  Google Scholar 

  27. L.Q. Wang, D.R. Baer M.H. Engelhard: Creation of variable concentrations of defects on TiO2(110) using low-density electron beams. Surf. Sci. 320, 295 1994

    Article  CAS  Google Scholar 

  28. V.M. Goldschmidt: Skrifter Norske Videnskaps Akad. Oslo, I. Mat.-Nat. Kl. 8 1926

    Google Scholar 

  29. O. Muller R. Roy: The Major Ternary Structural Families Springer-Verlag New York 1974

    Book  Google Scholar 

  30. D.R. Lide: CRC Handbook of Chemistry and Physics 85th ed. CRC Press New York 2004

    Google Scholar 

  31. P.A. Jonsson: Deconvolution of Images and Spectra Academic Press New York 1997

    Google Scholar 

  32. D.C. Sinclair, J.M.S. Skakle, F.D. Morrison, R.I. Smith T.P. Beales: Structure and electrical properties of oxygen-deficient hexagonal BaTiO3. J. Mater. Chem. 9, 1327 1999

    Article  CAS  Google Scholar 

  33. J.R. Macdonald: Impedance Spectroscopy Emphasizing Solid Materials and Systems John Wiley & Sons New York 1987

    Google Scholar 

  34. Y. Inaguma, L. Chen, M. Itoh T. Nakamura: Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ionics 70–71, 196 1994

    Article  Google Scholar 

  35. H. Kawai J. Kuwano: Lithium ion conductivity of A-site deficient perovskite solid solution La0.67−xLi3xTiO3. J. Electrochem. Soc. L78, 141 1994

    Google Scholar 

  36. Y. Inaguma M. Itoh: Influences of carrier concentration and site percolation in lithium ion conductivity in perovskite-type oxides. Solid State Ionics 86–88, 257 1996

    Article  Google Scholar 

  37. A.G. Belous: Synthesis and electrophysical properties of novel lithium ion conducting oxides. Solid State Ionics 90, 193 1996

    Article  CAS  Google Scholar 

  38. J. Emery, J.Y. Buzare, O. Bohnke J.L. Fourquet: Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ionics 99, 41 1997

    Article  CAS  Google Scholar 

  39. Y. Harada, T. Ishigaki, H. Kawai J. Kuwano: Lithium ion conductivity of polycrystalline perovskite La2/3−xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics 108, 407 1998

    Article  CAS  Google Scholar 

  40. J. Ibarra, A. Várez, C. León, J. Santamaría, L.M. Torres-Martinez J. Sanz: Influence of composition on the structure and conductivity of the fast ionic conductors La2/3–xLi3xTiO3. Solid State Ionics 134, 219 2000

    Article  CAS  Google Scholar 

  41. D. Stauffer A. Aharony: Introduction to Percolation Theory Taylor & Francis London 1994

    Google Scholar 

  42. Y. Inaguma, Y. Matsui, Y.J. Shan, M. Itoh T. Nakamura: Lithium ion conductivity in the perovskite-type LiTaO3–SrTiO3 solid solution. Solid State Ionics 79, 91 1995

    Article  CAS  Google Scholar 

  43. O. Bohnke, C. Bohnke, J. Ould Sid’Ahmed, M.P. Crosnier-Lopez, H. Duroy, F. Le Berre J.L. Fourquet: Lithium ion conductivity in new perovskite oxides [AgyLi1−y]3xLa2/3−x◽1/3−2xTiO3 (x = 0.09 and 0 ⩽ y ⩽ 1). Chem. Mater. 13, 1593 2001

    Article  CAS  Google Scholar 

  44. A. Rivera, C. Leon, J. Santamaria, A. Varez, O. V’yunov, A.G. Belous, J.A. Alonso J. Sanz: Percolation limited ionic diffusion in Li0.5−xNaxLa0.5TiO3 perovskites (0 < x < 0.5). Chem. Mater. 14, 5148 2002

    Article  CAS  Google Scholar 

  45. C.W. Ban G.M. Choi: The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics 140, 285 2001

    Article  CAS  Google Scholar 

  46. S. García-Martín, A. Morata-Orrantia M.Á. Alario-Franco: Influence of crystal microstructure on the dielectric response of the La0.67Li0.2Ti0.8Al0.2O3. J. Appl. Phys. 100, 054101 2006

    Article  CAS  Google Scholar 

  47. R.D. Cannon: Electron Transfer Reactions Butterworths London 1980

    Google Scholar 

  48. G.C. Allen J.M. Dyke: An investigation of the optical spectrum of lithium doped nickel oxide. Chem. Phys. Lett. 37, 391 1976

    Article  CAS  Google Scholar 

  49. A.J. Bosman C. Crevecoeur: Dipole relaxation losses in CoO doped with Li or Na. J. Phys. Chem. Solids 29, 109 1968

    Article  CAS  Google Scholar 

  50. B. Reuter, E. Riedel G. Buxbaum: Über Oxidsysteme mit Übergangsmetallionen in verschiedenen Oxydationsstufen. VII. Das System Mn(NixV2−x)O4. Z. Anorg. Allg. Chem. 367, 113 1969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Council of Taiwan for financial support (Contracts NSC 92-2120-M-006-003 and NSC 93-2120-M-006-004). We are grateful to Professor M.P. Hung for kindly offering advice and suggestions and to P. Glink (http://www.editchem.com) for polishing the language of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Yun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, KY., Leu, IC., Fung, KZ. et al. Mechanism of the interfacial reaction between cation-deficient La0.56Li0.33TiO3 and metallic lithium at room temperature. Journal of Materials Research 23, 1813–1825 (2008). https://doi.org/10.1557/JMR.2008.0255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0255

Navigation