Skip to main content
Log in

Synthesis and formation mechanism of hollow carbon spheres encapsulating magnetite nanocrystals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hollow carbon spheres encapsulating magnetite nanocrystals were obtained in high-pressure argon at 600 °C followed by hydrolysis of Fe(NH3)2Cl2 in the hollow interiors at room temperature and heat treatment in argon at 450 °C for 2 h. The structure, morphology, and properties of the products were characterized by x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The hollow carbon spheres have diameters of 1–10 μm and wall thicknesses of hundreds of nanometers; the wt% of magnetite nanocrystals in them is ∼13.2%. Equiaxed magnetite nanocrystals range in size from 15 to 90 nm, while acicular magnetite nanocrystals have diameters of ∼20 nm and lengths of 120–450 nm. The saturation magnetization value of the hollow carbon spheres encapsulating magnetite nanocrystals is 4.29 emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.C. Bokros: Carbon biomedical devices. Carbon 15, 353 1977

    Article  Google Scholar 

  2. L.C. Li, H.H. Song X.H. Chen: Hollow carbon microspheres prepared from polystyrene microbeads. Carbon 44, 596 2006

    Article  CAS  Google Scholar 

  3. J.M. Shen, J.Y. Li, Z. Huang, Q. Chen, S.Y. Zhang Y.T. Qian: A simple route for the synthesis of coral-like accretion of hollow carbon microspheres with thin walls. Carbon 44, 2171 2006

    Article  CAS  Google Scholar 

  4. Z.Y. Zhong, Y.D. Yin, B. Gates Y.N. Xia: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 2000

    Article  CAS  Google Scholar 

  5. C.Z. Wu, X. Zhu, L.L. Ye, C.Z. OuYang, S.Q. Hu, L.Y. Lei Y. Xie: Necklace-like hollow carbon nanospheres from the pentagon-including reactants: Synthesis and electrochemical properties. Inorg. Chem. 45, 8543 2006

    Article  CAS  Google Scholar 

  6. E. Baumeister S. Klaeger: Advanced new lightweight materials: Hollow-sphere composites (HSCs) for mechanical engineering applications. Adv. Eng. Mater. 5, 673 2003

    Article  CAS  Google Scholar 

  7. J. Zhang, R.J. Perez E.J. Lavernia: Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. J. Mater. Sci. 28, 2395 1993

    Article  CAS  Google Scholar 

  8. M. Baibarac, I. Baltog, C. Godon, S. Lefrant O. Chauvet: Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42, 3143 2004

    Article  CAS  Google Scholar 

  9. R. Asmatulu, M.A. Zalich, R.O. Claus J.S. Riffle: Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J. Magn. Magn. Mater. 292, 108 2005

    Article  CAS  Google Scholar 

  10. Q.A. Pankhurst, J. Connolly, S.K. Jones J. Dobson: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 2003

    Article  CAS  Google Scholar 

  11. L. Shao, D. Caruntu, J.F. Chen, C.J. O’Connor W.L. Zhou: Fabrication of magnetic hollow silica nanospheres for bioapplications. J. Appl. Phys. 97, 10Q908 2005

    Article  Google Scholar 

  12. Z.S. Wronski G.J.C. Carpenter: Carbon nanoshells obtained from leaching carbonyl nickel metal powders. Carbon 44, 1779 2006

    Article  CAS  Google Scholar 

  13. F.Y. Cao, C.L. Chen, Q. Wang Q.W. Chen: Synthesis of carbon–Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon 45, 727 2007

    Article  CAS  Google Scholar 

  14. B.S. Xu, J.J. Guo, X.M. Wang, X.G. Liu H. Ichinose: Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution. Carbon 44, 2631 2006

    Article  CAS  Google Scholar 

  15. S.H. Xuan, L.Y. Hao, W.Q. Jiang, X.L. Gong, Y. Hu Z.Y. Chen: A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18, 035602 2007

    Article  Google Scholar 

  16. K.T. Lee, Y.S. Jung S.M. Oh: Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 125, 5652 2003

    Article  CAS  Google Scholar 

  17. B.Y. Liu, D.C. Jia, Q.C. Meng J.C. Rao: A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere. Carbon 45, 668 2007

    Article  CAS  Google Scholar 

  18. JCPDS No. 73-1262 International Center for Diffraction Data Newton Square, PA 1997

  19. S. Bremm G. Meyer: Reactivity of ammonium halides: Action of ammonium chloride and bromide on iron and iron(III) chloride and bromide. Z. Anorg. Allg. Chem. 629, 1875 2003

    Article  CAS  Google Scholar 

  20. JCPDS No. 74-1862 International Center for Diffraction Data Newton Square, PA 1997

  21. N.W. Gregory: Vaporization characteristics of ammonium tetrachloroferrate(III). The monoammine of iron(III) chloride in the vapor phase. Inorg. Chem. 20, 3667 1981

    Article  CAS  Google Scholar 

  22. A. Barreiro, S. Hampel, M.H. Rümmeli, C. Kramberger, A. Grüneis, K. Biedermann, A. Leonhardt, T. Gemming, B. Büchner, A. Bachtold T. Pichler: Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B 110, 20973 2006

    Article  CAS  Google Scholar 

  23. J.E.O. Mayne: The oxidation of ferrous hydroxide. J. Chem. Soc. 129, 1953

  24. P. Refait J.M.R. Génin: The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros. Sci. 34, 797 1993

    Article  CAS  Google Scholar 

  25. A.A. Olowe, D. Rezel J.M.R. Génin: Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes. Hyperfine Interact. 46, 429 1989

    Article  Google Scholar 

  26. T. Misawa, K. Hashimoto S. Shimodaira: The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14, 131 1974

    Article  CAS  Google Scholar 

  27. JCPDS No. 33-0664 International Center for Diffraction Data Newton Square, PA 1981

  28. M.G. Siles-Dotor, Bokhimi, A. Morales, M. Benaissa A. Cabral-Prieto: Synthesis of nanostructured goethite and magnetite particles from the oxidation of Fe(OH)2 in a high-oxygen-flow-rate medium. Nanostruct. Mater. 8, 657 1997

    Article  CAS  Google Scholar 

  29. M.L. Greene, R.W. Schwartz J.W. Treleaven: Short residence time graphitization of mesophase pitch-based carbon fibers. Carbon 40, 1217 2002 APPENDIX

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Gerd Meyer for providing the standard XRD pattern of Fe(NH3)2Cl2 and Dr. Feng Li for useful discussion. This work is supported by the Program for New Century Excellent Talents in University (NCET grant 04-0327) and the Program of Excellent Team in Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechang Jia.

Appendix

Appendix

Images of as-prepared product formed in high-pressure argon and behavior of magnetite/HCSs in aqueous solution under external magnetic field; low-magnification SEM image of large-scale HCSs.

FIG. A1
figure FA1

As-prepared dark lump product obtained in the high-pressure argon.

FIG. A2
figure FA2

SEM image of large scale as-prepared HCSs after acid washing.

FIG. A3
figure FA3

(A) Black aqueous solution of well-dispersed magnetite/HCSs. (B) Response of magnetite/HCSs in the aqueous solution under external magnetic field (as indicated by the arrow).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Jia, D., Feng, H. et al. Synthesis and formation mechanism of hollow carbon spheres encapsulating magnetite nanocrystals. Journal of Materials Research 23, 1980–1986 (2008). https://doi.org/10.1557/JMR.2008.0244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0244

Navigation