Skip to main content
Log in

Heat generation associated with pressure-induced infiltration in a nanoporous silica gel

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

As a liquid moves in the nanopores of a silica gel, because of the hysteresis of sorption behavior, significant energy dissipation can take place. Through a calometric measurement, the characteristics of associated heat generation are investigated. The temperature variation increases with the mass of silica gel, which consists of a reversible part and an irreversible part. The residual temperature change is about 30% to 60% of the maximum temperature increase and can be accumulated as multiple loading cycles are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. B. Lefevre, A. Saugey, J.L. Barrat, L. Bocquet, E. Charlaix, P.F. Gobin G. Vigier: Intrusion and extrusion of water in highly hydrophobic mesoporous materials—Effects of the pore structure. J. Chem. Phys. 120, 4927 2004

    Article  CAS  Google Scholar 

  2. F.B. Surani, X. Kong Y. Qiao: Two staged sorption isotherm of a nanoporous energy absorption system. Appl. Phys. Lett. 87, 251906 2005

    Article  Google Scholar 

  3. F.B. Surani, X. Kong, D.B. Panchal Y. Qiao: Energy absorption of a nanoporous system subjected to dynamic loadings. Appl. Phys. Lett. 87, 163111 2005

    Article  Google Scholar 

  4. L. Coiffard V. Eroshenko: Temperature effect on water intrusion/extrusion in grafted silica gels. J. Colloid Interface Sci. 300, 304 2006

    Article  CAS  Google Scholar 

  5. D. Dubbeldam R.Q. Snurr: Recent development in the molecular modeling of diffusion in nanoporous materials. Mol. Simul. 33, 305 2007

    Article  CAS  Google Scholar 

  6. Y. Lei, W.P. Cai G. Wilde: Highly ordered nanostructures with tunable size, shape and properties—A new way to surface nanopatterning using ultra-thin alumina masks. Prog. Mater. Sci. 52, 465 2007

    Article  CAS  Google Scholar 

  7. A. Zukal: Recent trends in the synthesis of nanoporous materials. Chem. Listy 101, 208 2007

    CAS  Google Scholar 

  8. A. Han Y. Qiao: Pressure induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc. 128, 10348 2006

    Article  CAS  Google Scholar 

  9. X. Chen, F.B. Surani, X. Kong, V.K. Punyamurtula Y. Qiao: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89, 241918 2006

    Article  Google Scholar 

  10. F.B. Surani, A. Han Y. Qiao: An experimental investigation on pressurized liquid in confining nanoenvironment. Appl. Phys. Lett. 89, 093108 2006

    Article  Google Scholar 

  11. V.K. Punyamurtula, A. Han Y. Qiao: An experimental investigation on a nanoporous carbon functionalized liquid damper. Philos. Mag. Lett. 86, 829 2006

    Article  CAS  Google Scholar 

  12. Y. Qiao, V.K. Punyamurtula, A. Han, X. Kong F.B. Surani: Temperature dependence of working pressure of a nanoporous liquid spring. Appl. Phys. Lett. 89, 251905 2006

    Article  Google Scholar 

  13. A. Han Y. Qiao: Thermal effects on infiltration of a solubility sensitive volume memory liquid. Philos. Mag. Lett. 87, 25 2007

    Article  CAS  Google Scholar 

  14. A. Han Y. Qiao: A volume memory liquid. Appl. Phys. Lett. 91, 173123 2007

    Article  Google Scholar 

  15. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Ravalas L.G. Bachas: Aligned multiwalled carbon nanotube membranes. Science 303, 62 2004

    Article  CAS  Google Scholar 

  16. A.A. Gusev O. Guseva: Rapid mass transport in mixed matrix nanotube/polymer membranes. Adv. Mater. 19, 2672 2007

    Article  CAS  Google Scholar 

  17. Y.H. Xie, Y. Kong, H.J. Gao A.K. Soh: Molecular dynamics simulation of polarizable carbon nanotubes. Comput. Mater. Sci. 40, 460 2007

    Article  CAS  Google Scholar 

  18. A. Han Y. Qiao: Effects of nanopore size on properties of modified inner surfaces. Langmuir 23, 11396 2007

    Article  CAS  Google Scholar 

  19. A. Han Y. Qiao: Controlling infiltration pressure of a nanoporous silica gel via surface treatment. Chem. Lett. (Jpn.) 36, 882 2007

    Article  CAS  Google Scholar 

  20. X. Kong, F.B. Surani Y. Qiao: Energy absorption of nanoporous silica particles in aqueous solutions of sodium chloride. Phys. Scr. 74, 531 2006

    Article  CAS  Google Scholar 

  21. F.B. Surani Y. Qiao: Pressure induced infiltration of an epsomite-silica system. Philos. Mag. Lett. 86, 253 2006

    Article  CAS  Google Scholar 

  22. X. Kong Y. Qiao: Improvement of recoverability of a nanoporous energy absorption system by using chemical admixture. Appl. Phys. Lett. 87, 163111 2005

    Article  Google Scholar 

  23. P. Kondratyuk J.T. Yates: Molecular views of physical adsorption inside and outside of single-wall carbon nanotubes. Accounts Chem. Res. 40, 995 2007

    Article  CAS  Google Scholar 

  24. S.K. Bhatia D. Nicholson: Anomalous transport in molecularly confined spaces. J. Chem. Phys. 127, 124701 2007

    Article  CAS  Google Scholar 

  25. N.W. Ockwig T.M. Nenoff: Membranes for hydrogen separation. Chem. Rev. 107, 4078 2007

    Article  CAS  Google Scholar 

  26. J.C.M. Li: Damping of water infiltrated nanoporous glass. J. Alloys Compd. 310, 24 2000

    Article  CAS  Google Scholar 

  27. M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner E.D. Wetzel: Stab resistance of shear thickening fluid treated fabrics. Compos. Sci. Technol. 67, 565 2007

    Article  CAS  Google Scholar 

  28. Y.S. Lee, E.D. Wetzel N.J. Wagner: The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38, 2825 2003

    Article  CAS  Google Scholar 

  29. F.Q. Yang: Flow behavior of an Eyring fluid in a nanotube—The effect of the slip boundary condition. Appl. Phys. Lett. 90, 133105 2007

    Article  Google Scholar 

  30. G.G. Wildgoose, C.E. Banks, H.C. Leventis R.G. Compton: Chemically modified carbon nanotubes for use in electroanalysis. Microchem. Acta 152, 187 2006

    Article  CAS  Google Scholar 

  31. A. Han, X. Kong Y. Qiao: Pressure induced infiltration in nanopores. J. Appl. Phys. 100, 014308 2006

    Article  Google Scholar 

  32. Y. Qiao, G. Cao X. Chen: Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Army Research Office under Grant No. W911NF-05-1-0288. The authors are also grateful to Professor Vistasp M. Karbhair and Dr. Guijun Xian for the help with the measurement of specific heat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, A., Punyamurtula, V.K. & Qiao, Y. Heat generation associated with pressure-induced infiltration in a nanoporous silica gel. Journal of Materials Research 23, 1902–1906 (2008). https://doi.org/10.1557/JMR.2008.0236

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0236

Navigation