Skip to main content
Log in

In situ formation process and mechanism of bulk MgB2 before Mg melting

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Differential thermal analysis, as the main means of measurement, was used to prepare bulk MgB2 samples and monitor the sintering reaction process. Combined with microstructure observation by scanning electron microscopy and x-ray diffraction analysis, the formation process of MgB2 phase at the temperature before Mg melting was summarized. Additionally, a new kinetic analysis (a variant on the Flynn–Wall–Ozawa) method under nonisothermal conditions was used to determine that the reaction between Mg and B powders involves random nucleation followed by an instantaneous growth of nuclei (Avrami–Erofeev equation, n = 2), which can properly explain the in situ formation process of bulk MgB2 at the temperature before Mg melting. The value of activation energy E and the function of conversion f(α) are obtained independently, and thereby the determination of mechanism function is not affected by the value of E. The values of E decrease from 175.418 to 160.395 kJ mol−1 with the increase of the conversion degrees (α) from 0.1 to 0.8. However, as the conversion degrees approach 0.9, the value of E increases to 222.647 kJ mol−1, and the corresponding pre-exponential factor A is about three orders of magnitude larger than the previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE I.
FIG. 7
FIG. 8
TABLE II.
TABLE III.
TABLE IV.
TABLE V.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani J. Akimitsu: Superconductivity at 39K in magnesium diboride. Nature 410, 63 2001

    Article  CAS  Google Scholar 

  2. M. Dhallé, P. Toulemonde, C. Beneduce, N. Musolin, M. Decroux R. Flükiger: Transport and inductive critical current densities in superconducting MgB2. Physica C 363, 155 2001

    Article  Google Scholar 

  3. R.C. Yu, S.C. Li, Y.Q. Wang, X. Kong, J.L. Zhu, F.Y. Li, Z.X. Liu, X.F. Duan, Z. Zhang C.Q. Jin: EELS studies of MgB2 superconductor obtained under high pressure. Physica C 363, 184 2001

    Article  CAS  Google Scholar 

  4. A. Podder, B. Bandyopadhyay, P. Mandal, D. Bhattacharya, P. Choudhury, U. Shina B. Ghosh: Studies of transport properties of MgB2 superconductor. Physica C 390, 191 2003

    Article  Google Scholar 

  5. H. Kumakura, H. Kitaguchi, A. Matsumoto H. Hatakeyama: Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors. Appl. Phys. Lett. 84, 3669 2004

    Article  CAS  Google Scholar 

  6. L.D. Cooley, K. Kang, R.F. Klie, Q. Li, A.M. Moodenbaugh R.L. Sabatini: Formation of MgB2 at low temperatures by reaction of Mg with B6Si. Supercond. Sci. Technol. 17, 942 2004

    Article  CAS  Google Scholar 

  7. A. Yamamoto, J.I. Shimoyama, S. Ueda, Y. Katsura, S. Horii K. Kishio: Improved critical current properties observed in MgB2 bulks synthesized by low-temperature solid-state reaction. Supercond. Sci. Technol. 18, 116 2005

    Article  CAS  Google Scholar 

  8. Y.C. Liu, F. Sommer E.J. Mittemeijer: Abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater. 51, 507 2003

    Article  CAS  Google Scholar 

  9. G. Yan, Y. Feng, B.Q. Fu, C.F. Liu, P.X. Zhang, X.Z. Wu, L. Zhou, Y. Zhao A.K. Pradhan: Effect of synthesis temperature on density and microstructure of MgB2 superconductor at ambient pressure. J. Mater. Sci. 39, 4893 2004

    Article  CAS  Google Scholar 

  10. Q-R. Feng, C. Chen, J. Xu, L-W. Kong, X. Chen, Y-Z. Wang, Y. Zhang Z-X. Gao: Study on the formation of MgB2 phase. Physica C 411, 41 2003

    Article  Google Scholar 

  11. R.J. Brook: Pore–grain boundary interactions and grain growth. J. Am. Ceram. Soc. 52, 56 1969

    Article  CAS  Google Scholar 

  12. J.H. Flynn: Thermal analysis kinetics—Past, present and future. Thermochim. Acta 203, 519 1992

    Article  CAS  Google Scholar 

  13. T.P. Prasad, S.B. Kanungo H.S. Ray: Non-isothermal kinetics: Some merits and limitations. Thermochim. Acta 203, 503 1992

    Article  CAS  Google Scholar 

  14. S. Vyazovkin: Alternative description of process kinetics. Thermochim. Acta 211, 181 1992

    Article  CAS  Google Scholar 

  15. T. Ozawa: A new method of analyzing thermogravimetric data. Bull. Soc. Chem. Jpn. 38, 1881 1965

    Article  CAS  Google Scholar 

  16. C. Popescu: Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions—A variant on the Ozawa-Flynn-Wall method. Thermochim. Acta 285, 309 1996

    Article  CAS  Google Scholar 

  17. Y.C. Liu, Q.Z. Shi, Q. Zhao Z.Q. Ma: Kinetics analysis for the sintering of bulk MgB2 superconductor. J. Mater. Sci. 18, 855 2007

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (No. 50401003), the Natural Science Foundation of Tianjin City (No. 07JCZDJC01200), the Keygrant Project of Chinese Ministry of Education, and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Zhi Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, QZ., Liu, YC., Gao, ZM. et al. In situ formation process and mechanism of bulk MgB2 before Mg melting. Journal of Materials Research 23, 1840–1848 (2008). https://doi.org/10.1557/JMR.2008.0229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0229

Navigation