Skip to main content
Log in

Synthesis and characterization of tungsten oxide nanorods from chemical vapor deposition-grown tungsten film by low-temperature thermal annealing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple thermal annealing was performed to prepare tungsten oxide nanorods directly from tungsten (W) film. The W film was deposited on Si(100) substrate by chemical vapor deposition (CVD) at 450 °C using W(CO)6. A high density of tungsten oxide nanorods was produced by heating of the W film at 600–700 °C. The morphology, structure, composition, and chemical binding states of the prepared nanorods were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analysis. XRD and TEM results showed that the grown nanorods were single-crystalline W18O49. According to XPS analysis, the W18O49 nanorods contained ∼55.69% W6+, ∼32.28% W5+, and ∼12.03% W4+. The growth mechanism based on thermodynamics is discussed for the growth of tungsten oxide nanorods from W film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese C.A. Grimes: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 2006

    Article  CAS  Google Scholar 

  2. K. Shankar, G.K. Mor, A. Fitzgerald C.A. Grimes: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J. Phys. Chem. C 111, 21 2007

    Article  CAS  Google Scholar 

  3. X. Fang, C. Ye, X. Xu, T. Xie, Y. Wu L. Zhang: Synthesis and photoluminescence of α–Al2O3 nanowires. J. Phys. Condens. Matter 16, 4157 2004

    Article  CAS  Google Scholar 

  4. Y.C. Chang L.J. Chen: ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. J. Phys. Chem. C 111, 1268 2007

    Article  CAS  Google Scholar 

  5. M. Law, L.E. Greene, J.C. Johnson, R. Saykally P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 2005

    Article  CAS  Google Scholar 

  6. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li C.L. Lin: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 2004

    Article  CAS  Google Scholar 

  7. D.P. Singh, N.R. Neti, A.S.K. Sinha O.N. Srivastava: Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J. Phys. Chem. C 111, 1638 2007

    Article  CAS  Google Scholar 

  8. Z.L. Wang: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, R829 2004

    Article  CAS  Google Scholar 

  9. Y. Tak K. Yong: Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263 2005

    Article  CAS  Google Scholar 

  10. Y. Baek, Y. Song K. Yong: A novel heteronanostructure system: Hierarchical W nanothorn arrays WO3 nanowhiskers. Adv. Mater. 18, 3105 2006

    Article  CAS  Google Scholar 

  11. P. Gouma, K. Kalyanasundaram A. Bishop: Electrospun single-crystal MoO3 nanowires for biochemistry sensing probes. J. Mater. Res. 21, 2904 2006

    Article  CAS  Google Scholar 

  12. X. Qiu, G. Li L. Li: Inheriting morphology and photoluminescence properties of MgO nanoplates. J. Mater. Res. 22, 908 2007

    Article  CAS  Google Scholar 

  13. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003

    Article  CAS  Google Scholar 

  14. X.S. Fang, C.H. Ye, T. Xie, Z.Y. Wang, J.W. Zhao L.D. Zhang: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 2006

    Article  CAS  Google Scholar 

  15. X. Wang, J. Song Z.L. Wang: Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J. Mater. Chem. 17, 711 2007

    Article  CAS  Google Scholar 

  16. Y. Sun J.A. Rogers: Structural forms of single crystal semiconductor nanoribbons for high performance stretchable electronics. J. Mater. Chem. 17, 832 2007

    Article  CAS  Google Scholar 

  17. X.S. Fang, C.H. Ye, L.D. Zhang T. Xie: Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 2005

    Article  CAS  Google Scholar 

  18. X.S. Fang L.D. Zhang: Controlled growth of one-dimensional oxide nanomaterials. J. Mater. Sci. Technol. 22, 1 2006

    Article  CAS  Google Scholar 

  19. C. Yang, Y. Li, G. Xu X. Ma: Microstructure characterization of single-crystal ZnO nanorods synthesized by solvothermal at low temperature. J. Mater. Sci. Technol. 23, 583 2007

    CAS  Google Scholar 

  20. W. Cheng, E. Baudrin, B. Dunna J.I. Zink: Synthesis and electrochromic properties of mesoporous tungsten oxide. J. Mater. Chem. 11, 92 2001

    Article  CAS  Google Scholar 

  21. Y. He, Z. Wu, L. Fu, C. Li, Y. Miao, L. Cao, H. Fan B. Zou: Photochromism and size effect of WO3 and WO3–TiO2 aqueous sol. Chem. Mater. 15, 4039 2003

    Article  CAS  Google Scholar 

  22. J.E. Herrera, J.H. Kwak, J.Z. Hua, Y. Wang, C.H.F. Peden, J. Macht E. Iglesia: Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. J. Catal. 239, 200 2006

    Article  CAS  Google Scholar 

  23. J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti M. Niederberger: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem., Int. Ed. Engl. 45, 261 2006

    Article  CAS  Google Scholar 

  24. J. Liu, Y. Zhao Z. Zhang: Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods. J. Phys. Condens. Matter 15, L453 2003

    Article  CAS  Google Scholar 

  25. Z. Liu, Y. Bando C. Tang: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 2003

    Article  CAS  Google Scholar 

  26. Y.U. Koltypin, S.I. Nikitenkob A. Gedanken: The sonochemical preparation of tungsten oxide nanoparticles. J. Mater. Chem. 12, 1107 2002

    Article  CAS  Google Scholar 

  27. F. Xu, S.D. Tse, J.F. Al-Sharab B.H. Kear: Flame synthesis of aligned tungsten oxide nanowires. Appl. Phys. Lett. 88, 243115 2006

    Article  CAS  Google Scholar 

  28. G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro R. Tenne: Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 162, 300 2001

    Article  CAS  Google Scholar 

  29. Y.Q. Zhu, W. Hu, W.K. Hsu, M. Terrones, N. Grobert, J.P. Hare, H.W. Kroto, D.R.M. Walton H. Terrones: Tungsten oxide tree-like structures. Chem. Phys. Lett. 309, 327 1999

    Article  CAS  Google Scholar 

  30. G. Gu, B. Zheng, W.Q. Han, S. Roth J. Liu: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 2002

    Article  CAS  Google Scholar 

  31. M.H. Cho, S.A. Park, K.D. Yang, I.W. Lyo, K. Jeong, S.K. Kang, D.H. Ko, K.W. Kwon, J.H. Ku, S.Y. Choi H.J. Shin: Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment. J. Vac. Sci. Technol., B 22, 1084 2004

    Article  CAS  Google Scholar 

  32. C. Chen, S. Wang, R. Ko, Y. Kuo, K. Uang, T. Chen, B. Liou H. Tsai: The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films. Nanotechnology 17, 217 2006

    Article  CAS  Google Scholar 

  33. J. Zhou, L. Gong, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, R. Yang Z.L. Wang: Growth and field-emission property of tungsten oxide nanotip arrays. Appl. Phys. Lett. 87, 223108 2005

    Article  CAS  Google Scholar 

  34. Y. Li, Y. Bando D. Golberg: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 2003

    Article  CAS  Google Scholar 

  35. Y.Z. Jin, Y.Q. Zhu, R.L.D. Whitby, N. Yao, R. Ma, P.C.P. Watts, H.W. Kroto D.R.M. Walton: Simple approaches to quality large-scale tungsten oxide nanoneedles. J. Phys. Chem. B 108, 15572 2004

    Article  CAS  Google Scholar 

  36. S.J. Wang, C.H. Chen, R.M. Ko, Y.C. Kuo, C.H. Wong, C.H. Wu, K.M. Uang, T.M. Chen B.W. Liou: Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl. Phys. Lett. 86, 263103 2005

    Article  CAS  Google Scholar 

  37. W.B. Hu, Y.Q. Zhu, W.K. Hsu, B.H. Chang, M. Terrones, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto D.R.M. Walton: Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70, 231 2000

    Article  CAS  Google Scholar 

  38. H.G. Choi, Y.H. Jung D.K. Kim: Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc. 88, 1684 2005

    Article  CAS  Google Scholar 

  39. K. Lee, W.S. Seo J.T. Park: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408 2003

    Article  CAS  Google Scholar 

  40. X.W. Lou H.C. Zeng: An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg. Chem. 42, 6169 2003

    Article  CAS  Google Scholar 

  41. X.L. Li, J.F. Liu Y.D. Li: Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 42, 921 2003

    Article  CAS  Google Scholar 

  42. J. Seo, Y. Jun, S.J. Ko J. Cheon: In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals. J. Phys. Chem. B 109, 5389 2005

    Article  CAS  Google Scholar 

  43. J. Polleux, N. Pinna, M. Antonietti M. Niederberger: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 2005

    Article  CAS  Google Scholar 

  44. K. Woo, J. Hong, J. Ahn, J. Park K. Kim: Coordinatively induced length control and photoluminescence of W18O49 nanorods. Inorg. Chem. 44, 7171 2005

    Article  CAS  Google Scholar 

  45. JCPDS No. 04-0806. International Center for Diffraction Data Newton Square, PA 1953

  46. U. Jeong, P.H.C. Camargo, Y.H. Leeb Y. Xia: Chemical transformation: A powerful route to metal chalcogenide nanowires. J. Mater. Chem. 16, 3893 2006

    Article  CAS  Google Scholar 

  47. J.T. McCann, D. Li Y. Xia: Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem. 15, 735 2005

    Article  CAS  Google Scholar 

  48. X.S. Fang, C.H. Ye, L.D. Zhang, W.H. Wang Y.C. Wu: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater. 15, 63 2005

    Article  CAS  Google Scholar 

  49. X.S. Fang, C.H. Ye, X.S. Peng, Y.H. Wang, Y.C. Wu L.D. Zhang: Temperature-controlled growth of a-Al2O3 nanobelts and nanosheets. J. Mater. Chem. 13, 3040 2003

    Article  CAS  Google Scholar 

  50. F. Kim, S. Connor, H. Song, T. Kuykendall P. Yang: Platonic gold nanocrystals. Angew. Chem., Int. Ed. Engl. 43, 3673 2004

    Article  CAS  Google Scholar 

  51. L.S. Jim, L.E. Makovskyt, J.M. Stencel, F.R. Brown D.M. Hercules: Surface spectroscopic study of tungsten-alumina catalysts using x-ray photoelectron, ion scattering, and raman spectroscopies. J. Phys. Chem. 85, 3700 1981

    Article  Google Scholar 

  52. A. Romanyuk P. Oelhafen: Evidence of different oxygen states during thermal coloration of tungsten oxide. Sol. Energy Mater. Sol. Cells 25, 490 2006

    Google Scholar 

  53. S. Santucci, C. Cantalini, M. Crivellari, L. Lozzi, L. Ottaviano M. Passacantando: X-ray photoemission spectroscopy and scanning tunneling spectroscopy study on the thermal stability of WO3 thin films. J. Vac. Sci. Technol., A 18, 1077 2000

    Article  CAS  Google Scholar 

  54. G. Leftheriotisa, S. Papaefthimioua, P. Yianoulisa A. Siokou: Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films 384, 298 2001

    Article  Google Scholar 

  55. L. Lozzi, M. Passacantando, S. Santucci, S.L. Rosa N.Y.U. Svechnikov: Surface and in depth chemistry of polycrystalline WO3 thin films studied by x-ray and soft x-ray photoemission spectroscopies. IEEE Sensors J. 3, 180 2003

    Article  CAS  Google Scholar 

  56. D. Gogova, K. Gesheva, A. Szekeres M. Sendova-Vassileva: Structural and optical properties of CVD thin tungsten oxide films. Phys. Status Solidi 176, 969 1999

    Article  CAS  Google Scholar 

  57. B.A. De Angelis M. Schiavello: X-ray photoelectron spectroscopy study of nonstoichiometric tungsten oxides. J. Solid State Chem. 21, 67 1977

    Article  Google Scholar 

  58. JCPDS No. 36-101. International Center for Diffraction Data Newton Square, PA 1982

  59. Q.T. Vu, P.J. Pokela, C.L. Garden, E. Kolawa, S. Raud M.A. Nicolet: Thermal oxidation of reactively sputtered amorphous W80N20 films. J. Appl. Phys. 68, 6420 1990

    Article  CAS  Google Scholar 

  60. M. Gillet, R. Delamare E. Gillet: Growth, structure and electrical properties of tungsten oxide nanorods. Eur. Phys. J. D 34, 291 2005

    Article  CAS  Google Scholar 

  61. S. Santucci, L. Lozzi, E. Maccallini, M. Passacantando, L. Ottaviano C. Cantalini: Oxygen loss and recovering induced by ultrahigh vacuum and oxygen annealing on WO3 thin film surfaces: Influences on the gas response properties. J. Vac. Sci. Technol., A 19, 1467 2001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-005-J13101) and Grant No. RTI04-01-04 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kijung Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, S., Yong, K. Synthesis and characterization of tungsten oxide nanorods from chemical vapor deposition-grown tungsten film by low-temperature thermal annealing. Journal of Materials Research 23, 1320–1326 (2008). https://doi.org/10.1557/JMR.2008.0158

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0158

Navigation