Skip to main content
Log in

Composition, particle size, and near-infrared irradiation effects on optical properties of Au–Au2S nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Near-infrared (NIR)-absorbing nanoparticles synthesized by the reduction of tetrachloroauric acid (HAuCl4) using sodium sulfide (Na2S) exhibited absorption bands at ∼530 nm and at the NIR region of 650−1100 nm. A detailed study on the structure and microstructure of as-synthesized nanoparticles was reported previously. The as-synthesized nanoparticles were found to consist of amorphous AuxS (x = ∼2), mostly well mixed within crystalline Au. In this work, the optical properties were tailored by varying the precursor molar ratios of HAuCl4 and Na2S. In addition, a detailed study of composition and particle-size effects on the optical properties was discussed. The change of polarizability by the introduction of S in the form of AuxS (x = ∼2) had a significant effect on NIR absorption. Also, it was found in this work that exposure of these particles to NIR irradiation using a Nd:YAG laser resulted in loss of the NIR absorption band. Thermal effects generated during NIR irradiation had led to microstructural changes that modified the optical properties of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
TABLE II.
TABLE III.
TABLE IV.
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. L. Brannon-Peppas J.O. Blanchette: Nanoparticle and targeted systems for cancer therapy. Adv. Drug Delivery Rev. 56, 1649 2004

    Article  CAS  Google Scholar 

  2. J. Kost R. Langer: Responsive polymeric delivery systems. Adv. Drug Delivery Rev. 46, 125 2001

    Article  CAS  Google Scholar 

  3. J.V. Frangioni: In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626 2003

    Article  CAS  Google Scholar 

  4. R. Weissleder: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 2001

    Article  CAS  Google Scholar 

  5. L. Ren G.M. Chow: Synthesis of NIR-sensitive Au-Au2S nanocolloids for drug delivery. Mater. Sci. Eng., C 23, 113 2003

    Article  Google Scholar 

  6. G.M. Chow, M.C. Tan, L. Ren J.Y. Ying: NIR-sensitive nanoparticles, U.S. Patent (application pending) No. 2006099146 (May 11, 2006)

    Google Scholar 

  7. S.J. Oldenburg, R.D. Averitt, S.L. Westcott N.J. Halas: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 1998

    Article  CAS  Google Scholar 

  8. C. Loo, A. Lowery, N. Halas, J. West R. Drezek: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709 2005

    Article  CAS  Google Scholar 

  9. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas J.L. West: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 2003

    Article  CAS  Google Scholar 

  10. S. Sershen J. West: Implantable, polymeric systems for modulated drug delivery. Adv. Drug. Delivery Rev. 54, 1225 2002

    Article  CAS  Google Scholar 

  11. L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas J. West: A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377 2003

    Article  CAS  Google Scholar 

  12. H.S. Zhou, I. Honma H. Komiyama: Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B: Condens. Matter 50, 12052 1994

    Article  CAS  Google Scholar 

  13. R.D. Averitt, D. Sarkar N.J. Halas: Plasmon resonance shifts of Au-coated Au2S nanoshells. Phys. Rev. Lett. 78, 4217 1997

    Article  CAS  Google Scholar 

  14. M.C. Tan, J.Y. Ying G.M. Chow: Structure and microstructure of near infrared-absorbing Au-Au2S nanoparticles. J. Mater. Res. 22, 2531 2007

    Article  CAS  Google Scholar 

  15. P.V. Kamat: Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729 2002

    Article  CAS  Google Scholar 

  16. S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht M.A. El-Sayed: Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse width dependence. J. Phys. Chem. A 103, 1165 1999

    Article  CAS  Google Scholar 

  17. S. Link M.A. El-Sayed: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 1999

    Article  CAS  Google Scholar 

  18. S. Link M.A. El-Sayed: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409 2000

    Article  CAS  Google Scholar 

  19. C. Kittel Introduction to Solid State Physics 8th ed. John Wiley & Sons Hoboken, NJ 2005

    Google Scholar 

  20. U. Kreibig M. Vollmer: Optical Properties of Metal Clusters Springer Berlin 1995

    Book  Google Scholar 

  21. M. Fox: Optical Properties of Solids Oxford University Press New York 2000

    Google Scholar 

  22. C. Voisin, N.D. Fatti, D. Christofilos F. Vallée: Ultrafast electron dynamics and optical non linearities in metal nanoparticles. J. Phys. Chem. B 105, 2264 2001

    Article  CAS  Google Scholar 

  23. A. Pinchuk, G. von Plessen U. Kreibig: Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D: Appl. Phys. 37, 3313 2004

    Article  CAS  Google Scholar 

  24. S. Licht: Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971 1988

    Article  CAS  Google Scholar 

  25. J. Turkevich, P.C. Stevenson J. Hillier: The nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 1951

    Article  Google Scholar 

  26. R.J. Stokes D.F. Evans: Fundamentals of Interfacial Engineering Wiley-VCH New York 1997

    Google Scholar 

  27. R.J. Davey J. Garside: From Molecules to Crystallizers Oxford University Press Oxford, UK 2000

    Google Scholar 

  28. H.P. Klug L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2nd Ed. John Wiley & Sons New York 1974

    Google Scholar 

  29. D.C. Koningsberger R. Prins: X-ray absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES John Wiley & Sons New York 1988

    Google Scholar 

  30. S.J. Gurman: Interpretation of EXAFS data. J. Synchrotron Rad. 2, 56 1995

    Article  CAS  Google Scholar 

  31. E.A. Stern: Theory of the extended x-ray absorption fine structure. Phys. Rev. B: Solid State 10, 3027 1974

    Article  CAS  Google Scholar 

  32. J. Petiau, P. Sainctavit G. Calas: X-ray absorption spectra and electronic structure of chalcopyrite. Mater. Sci. Eng., B 1, 237 1988

    Article  Google Scholar 

  33. J.F. Watts J. Wolstenholme: An Introduction to Surface Analysis by XPS and AES John Wiley & Sons New York 2003

    Book  Google Scholar 

  34. D.R. Lide CRC Handbook of Chemistry and Physics 85th ed. CRC Press Cleveland, OH 2004

    Google Scholar 

  35. S. Link, Z.L. Wang M.A. El-Sayed: Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103, 3529 1999

    Article  CAS  Google Scholar 

  36. M.J.C. van Gemert A.J. Welch: Time constants in thermal laser medicine. Lasers Surg. Med. 9, 405 1989

    Article  Google Scholar 

  37. M. Hu G.V. Hartland: Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. J. Phys. Chem. B 106, 7029 2002

    Article  CAS  Google Scholar 

  38. C.L. Cleveland, W.D. Luedtke U. Landman: Melting of gold clusters. Phys. Rev. B: Condens. Matter 60, 5065 1999

    Article  CAS  Google Scholar 

  39. C. Kan, X. Zhu G. Wang: Single-crystalline gold microplates: Synthesis, characterization, and thermal stability. J. Phys. Chem. B 110, 4651 2006

    Article  CAS  Google Scholar 

  40. M. Gillet: Structure of small metallic particles. Surf. Sci. 67, 139 1977

    Article  CAS  Google Scholar 

  41. N. Uyeda, M. Nishino E. Suito: Nucleus interactions and fine structures of colloidal gold particles. J. Colloid Interface Sci. 43, 264 1972

    Article  Google Scholar 

  42. T. Komoda: Study on the structure of evaporated gold particles by means of a high resolution electron microscope. Jpn. J. Appl. Phys. 7, 27 1968

    Article  CAS  Google Scholar 

  43. P. Jena, S.N. Khanna B.K. Rao: Physics and Chemistry of Finite Systems: From Clusters to Crystals Vol. 1 Kluwer Academic Dordrecht, The Netherlands 1992 93

    Google Scholar 

  44. W. Vogel, J. Bradley, O. Vollmer I. Abraham: Transition from five-fold symmetric to twinned fcc gold particles by thermally induced growth. J. Phys. Chem. B 102, 10853 1998

    Article  CAS  Google Scholar 

  45. P. Wynblatt R.C. Ku: Surface energy and solute strain energy effects in surface segregation. Surf. Sci. 65, 511 1977

    Article  CAS  Google Scholar 

  46. F. Liu H. Metiu: Dynamics of phase separation of crystal surfaces. Phys. Rev. B: Condens. Matter 48, 5808 1993

    Article  CAS  Google Scholar 

  47. J.A. Osborn: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351 1945.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Singapore-Massachusetts Institute of Technology Alliance and by a National University of Singapore (NUS) Academic Research Grant. Gan Moog Chow acknowledges the support of the United States Office of Naval Research. The authors thank Changhai Wang, Yongzhong Zhou, and Xingyu Gao for assistance with data collection at the synchrotron beam line, and acknowledge the support of beam time from the National Synchrotron Radiation Research Center, Taiwan. We also thank Binghai Liu for assistance in TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Moog Chow.

Appendix: Supporting Information

Appendix: Supporting Information

Composition, particle size and NIR irradiation effects on optical properties of Au-Au2S nanoparticles.

FIG. A1
figure 14

TEM micrographs of particles synthesized with S:Au precursor molar ratios of (a) 0.3, (b) 0.4, (c) 0.5, (d) 0.6, (e) 0.7, (f) 0.8, (g) 0.9, (h) 1.0 and (i) 2.0.

FIG. A2
figure 15

XRD patterns of particles synthesized with varying S:Au precursor molar ratios.

FIG. A3
figure 16

Temperature profiles at Au particle surfaces using transient conditions with μAu = (◽) 8 × 104 m−1, (◦) 2 × 105 m−1, (Δ) 4 × 105 m−1.

FIG. A4
figure 17

(a) Bright-field TEM micrograph and (b) convergent electron beam diffraction pattern of particles before NIR irradiation.

FIG. A4
figure 18

(a) Bright field TEM micrograph and (b) convergent electron beam diffraction pattern of particles after NIR irradiation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M.C., Ying, J.Y. & Chow, G.M. Composition, particle size, and near-infrared irradiation effects on optical properties of Au–Au2S nanoparticles. Journal of Materials Research 23, 281–293 (2008). https://doi.org/10.1557/JMR.2008.0038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0038

Navigation