Skip to main content
Log in

Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we report the growth of metallic tungsten nanowires induced by alloy catalysts (Fe–Ni) at a temperature of 850 °C. The synthesized tungsten nanowires have bottom diameters of 100 to 400 nm and tip diameters of <80 nm, and show a well-defined single-crystalline structure. The formation of the (Fe,Ni)-catalyzed W nanowires should be controlled by the vapor–solid–solid mechanism, rather than the traditional vapor–liquid–solid mechanism, because the growth temperature is significantly below the lowest eutectic temperature (1455 °C) of the Fe–Ni–W ternary system. Our study demonstrates the feasibility of synthesizing metallic nanowires via metal-catalyzed methods, which may be extended to the synthesis of some other metallic nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim H.Q. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003

    Article  CAS  Google Scholar 

  2. M. Law, J. Goldberger P. Yang: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 2004

    Article  CAS  Google Scholar 

  3. E.C. Walter, K. Ng, M.P. Zach, R.M. Penner F. Favier: Electronic device from electrodeposited metal nanowires. Microelectron. Eng. 61, 555 2002

    Article  Google Scholar 

  4. T.M. Whitney, J.S. Jiang, P.C. Searson C.L. Chien: Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316 1993

    Article  CAS  Google Scholar 

  5. C.D. Keating M.J. Natan: Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451 2003

    Article  CAS  Google Scholar 

  6. F. Patolsky, Y. Weizmann I. Willner: Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 3, 692 2004

    Article  CAS  Google Scholar 

  7. M.P. Zach, K.H. Ng R.M. Penner: Molybdenum nanowires by electrodeposition. Science 290, 2120 2000

    Article  CAS  Google Scholar 

  8. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph E. Braun: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 2002

    Article  CAS  Google Scholar 

  9. J. Wang Y. Li: Rational synthesis of metal nanotubes and nanowires from lamellar structures. Adv. Mater. 15, 445 2003

    Article  CAS  Google Scholar 

  10. H. Choi S.H. Park: Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 126, 6248 2004

    Article  CAS  Google Scholar 

  11. S. Vaddiraju, H. Chandrasekaran M.K. Sunkara: Vapor phase synthesis of tungsten nanowires. J. Am. Chem. Soc. 125, 10792 2003

    Article  CAS  Google Scholar 

  12. J. Zhou, S. Deng, L. Gong, Y. Ding, J. Chen, J. Huang, J. Chen, N. Xu Z.L. Wang: Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: Synthesis, growth mechanism, and device application. J. Phys. Chem. B 110, 10296 2006

    Article  CAS  Google Scholar 

  13. B.H. Hong, S.C. Bae, C.W. Lee, S. Jeong K.S. Kim: Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294, 348 2001

    Article  CAS  Google Scholar 

  14. Y. Sun, B. Gates, B. Mayers Y. Xia: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165 2002

    Article  CAS  Google Scholar 

  15. Y.H. Lee, C.H. Choi, Y.T. Jang, E.K. Kim B.K. Ju: Tungsten nanowires and their field electron-emission properties. Appl. Phys. Lett. 81, 745 2002

    Article  CAS  Google Scholar 

  16. A.G. Umnov, Y. Shairatori H. Hiraoka: Giant field amplification in tungsten nanowires. Appl. Phys. A 77, 159 2003

    Article  CAS  Google Scholar 

  17. T.J. Trentler, K.M. Kickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro: Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science 270, 1791 1995

    Article  CAS  Google Scholar 

  18. J.D. Holmes, K.P. Johnston, R.C. Doty B.A. Korgel: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 2000

    Article  CAS  Google Scholar 

  19. A.M. Morales C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 1998

    Article  CAS  Google Scholar 

  20. X.F. Duan C.M. Lieber: General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298 2000

    Article  CAS  Google Scholar 

  21. Y. Wu P. Yang: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 2001

    Article  CAS  Google Scholar 

  22. T.I. Kamins, R. Stanley Williams, D.P. Basile, T. Hesjedal J.S. Harris: Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 89, 1008 2001

    Article  CAS  Google Scholar 

  23. A.I. Persson, M.W. Larsson, S. Stenstrom, B.J. Ohlsson, L. Samuelson L.R. Wallenberg: Solid-phase diffusion mechanism for GaAs nanowires growth. Nat. Mater. 3, 677 2004

    Article  CAS  Google Scholar 

  24. K.A. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson W. Seifert: Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5, 761 2005

    Article  CAS  Google Scholar 

  25. A. Colli, S. Hofmann, A.C. Ferrari, C. Ducati, F. Martelli, S. Rubini, S. Cabrini, A. Franciosi J. Robertson: Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Appl. Phys. Lett. 86, 153103 2005

    Article  Google Scholar 

  26. H.Y. Tuan, D.C. Lee, T. Hanrath B.A. Korgel: Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. Nano Lett. 5, 681 2005

    Article  CAS  Google Scholar 

  27. P. Villars, A. Prince H. Okamoto: Handbook of Ternary Diagrams ASM Materials Park, OH 1990 10671

    Google Scholar 

  28. R.Q. Zhang, Y. Lifshitz S.T. Lee: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15, 635 2003

    Article  CAS  Google Scholar 

  29. E. Lassner W.D. Schubert: Tungsten: Properties, Chemistry, Technology Of The Element, Alloys, and Chemical Compounds Kluwer Academic/Plenum Publishers New York 1998

    Google Scholar 

  30. R. Haubner, W.D. Schubert, E. Lassner B. Lux: Influence of iron and nickel on the hydrogen reduction of WO3 to tungsten. Int. J. Refract. Hard Mater. 7, 47 1988

    CAS  Google Scholar 

  31. Y.H. He L.B. Chen, B.Y. Huang P.K. Liaw Recycling of heavy metal alloy turnings to powders by oxidation-reduction process. Int. J. Refract. Hard Mater. 21, 227 2003

    Article  CAS  Google Scholar 

  32. Z. Wen, M. Zhao Q. Jiang: The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size rang. J. Phys.: Condens. Matter 12, 8819 2000

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 50374082), the Australian Research Council (Grant No. DP0663304), the Australian Department of Education, Science and Training (Grant No. CH060063), and the Division of Materials Science and Engineering, Office of Basic Energy Sciences, United States Department of Energy (under Contract DE-AC05-00OR-22725 with UT-Battelle, LLC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuehui He or Jin Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., He, Y., Xu, J. et al. Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C. Journal of Materials Research 23, 72–77 (2008). https://doi.org/10.1557/JMR.2008.0033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0033

Navigation