Skip to main content
Log in

Fabrication of machinable AlN–BN composites with high thermal conductivity by pressureless sintering turbostatic BN-coated AlN nanocomposite powders

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To impart machinability to hard and brittle AlN ceramics without losing their high thermal conductivity, a homogeneous dispersion of fine BN particles in an AlN matrix was investigated. A homogeneous dispersion of BN particles was obtained by pressureless sintering of turbostatic BN-coated AlN nanocomposite powder (AlN–BN nanocomposite powder), which was prepared by reducing and heating AlN particles containing a mixture of boric acid, urea, and carbon. Though AlN is slightly oxidized by boric acid during the reduction, the addition of carbon reduced the oxygen content of the AlN–BN composite powder by carbothermal reduction of the oxidized AlN particles. As a result, the thermal conductivity of the sintered material increased with decreasing oxygen content of the nanocomposite powder. AlN–BN nanocomposites containing more than 20 vol% BN showed high strength, machinability, and relatively high thermal conductivity in comparison with the conventional microcomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
TABLE I.
TABLE II.
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. M.P. Borom, G.A. Slack, J.W. Szymaszek: Thermal conductivity of commercial alumium nitride. Am. Ceram. Soc. Bull. 51, 852 1972

    CAS  Google Scholar 

  2. G-F. Xu, T. Olorunyolemi, O.C. Wilson, I.K. Lloyd, Y. Carmel: Microwave sintering of high-density, high thermal conductivity AlN. J. Mater. Res. 17, 2837 2002

    Article  CAS  Google Scholar 

  3. G-F. Xu, Y. Carmel, T. Olorunyolemi, I.K. Lloyd, O.C. Wilson Jr.: Microwave sintering and properties of AlN/TiB2 composites. J. Mater. Soc. 18, 66 1989

    Article  Google Scholar 

  4. J. Tatami, K. Komeya, T. Meguro, S. Iwasawa, M. Komatsu: Fracture behavior of high thermal conductive aluminum nitride. Ceram. Eng. Sci. Proc. 20, 411 1999

    Article  CAS  Google Scholar 

  5. N. Kuramoto, H. Taniguchi, I. Aso: Development of translucent aluminum nitride ceramics. Am. Ceram. Soc. Bull. 68, 883 1989

    CAS  Google Scholar 

  6. R.R. Lee: Development of high thermal conductivity aluminum nitride ceramic. J. Am. Ceram. Soc. 74, 2242 1991

    Article  CAS  Google Scholar 

  7. K. Watari, H. Hwang, M. Toriyama, S. Kanzaki: Low-temperature sintering and high thermal conductivity of YLiO2-doped AlN ceramics. J. Am. Ceram. Soc. 79, 1979 1996

    Article  CAS  Google Scholar 

  8. T. Jackson, A. Virkar, K. More, R. Dinwiddie: High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructual factors. J. Am. Ceram. Soc. 80, 1421 1997

    Article  CAS  Google Scholar 

  9. X. Luo, J. Li, B. Zhang, W. Li, H. Zhuang: High thermal conductivity aluminum nitride substrates prepared by aqueous tape casting. J. Am. Ceram. Soc. 89, 836 2006

    Article  CAS  Google Scholar 

  10. A.W. Weimer, G.A. Cochran, G.A. Eisman, J.P. Henley, B.D. Hook, L.K. Mills, T.A. Guiton, A.K. Knudsen, N.R. Nicholas, J.E. Volmering, W.G. Moore: Rapid process for manufacturing aluminum nitride powder. J. Am. Ceram. Soc. 77, 3 1994

    Article  CAS  Google Scholar 

  11. T. Yamakawa, J. Tatami, K. Komeya, T. Meguro: Synthesis of AlN powder from Al(OH)3 by reduction–nitridation in a mixture of NH3–C3H8 gas. J. Eur. Ceram. Soc. 26, 2413 2006

    Article  CAS  Google Scholar 

  12. Z.A. Munir, W-S. Cho, M-W. Cho, J-H. Lee: Effects of h-BN additive on the microstructure and mechanical properties of AlN-based machinable ceramics. Mater. Sci. Eng., A 418, 61 2006

    Article  Google Scholar 

  13. H-Y. Jin, W. Wang, J-Q. Gao, G-J. Qiao, Z-H. Jin: Fabrication and properties of machinable AlN-BN ceramic nanocomposites. Key Eng. Mater. 317-318, 637 2006

    Article  CAS  Google Scholar 

  14. T. Kusunose, T. Sekino, B-S. Kim, Y-H. Choa, T. Nomoto, Y. Yamamoto, K. Niihara: Properties of hot-pressed AlN/BN nanocomposites. Mater. Sci. Forum 439, 131 2003

    Article  CAS  Google Scholar 

  15. A. Lipp, K.A. Schwetz, K. Hunold: Hexagonal boron nitride: Fabrication, properties and applications. J. Eur. Ceram. Soc. 5, 3 1989

    Article  CAS  Google Scholar 

  16. V. Brozek, M. Hubacek: A contribution to the crystallochemistry of boron nitride. J. Solid State Chem. 100, 120 1992

    Article  CAS  Google Scholar 

  17. G-J. Zhang, J-F. Yang, M. Ando, T. Ohji: Nonoxide-boron nitride composites: In situ synthesis, microstructure and properties. J. Eur. Ceram. Soc. 22, 2551 2002

    Article  CAS  Google Scholar 

  18. G-J. Zhang, J-F. Yang, M. Ando, T. Ohji, S. Kanzaki: Reactive synthesis of alumina-boron nitride composites. Acta Mater. 52, 1823 2004

    Article  CAS  Google Scholar 

  19. D. Goeuriot-Launay, G. Brayet, F. Thevenot: Boron nitride effect on the thermal shock resistance of an alumina-based ceramic composite. J. Mater. Sci. Lett. 5, 940 1986

    Article  CAS  Google Scholar 

  20. T. Kusunose, T. Sekino, Y-H. Choa, K. Niihara: Fabrication and microstructure of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc. 85, 2678 2002

    Article  CAS  Google Scholar 

  21. K. Niihara: New design concept of structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Jpn. 99, 974 1991

    Article  CAS  Google Scholar 

  22. J. Zhao, L.C. Stearns, M.P. Harmer, H.M. Chan, G.A. Miller, R.E. Cook: Mechanical behavior of alumina-silicon carbide “nanocomposites.” J. Am. Ceram. Soc. 76, 503 1993

    Article  CAS  Google Scholar 

  23. T. Sekino, T. Nakajima, S. Ueda, K. Niihara: Reduction and sintering of a nickel-dispersed-alumina composite and its properties. J. Am. Ceram. Soc. 80, 1139 1997

    Article  CAS  Google Scholar 

  24. S-T. Oh, T. Sekino, K. Niihara: Fabrication and mechanical properties of 5 vol% copper dispersed alumina nanocomposite. J. Eur. Ceram. Soc. 18, 31 1998

    Article  CAS  Google Scholar 

  25. T. Ohji, Y-K. Jeong, Y-H. Choa, K. Niihara: Strengthening and toughening mechanisms of ceramic nanocomposites. J. Am. Ceram. Soc. 81, 1453 1998

    Article  CAS  Google Scholar 

  26. T. Kusunose: Fabrication of boron nitride dispersed nanocomposites by chemical processing and their mechanical properties. J. Ceram. Soc. Jpn. 114, 167 2006

    Article  CAS  Google Scholar 

  27. W-S. Cho, Z-H. Piao, K-J. Lee, Y-C. Yoo, J-H. Lee, M-W. Cho, Y-C. Hong, K. Park, W-S. Hwang: Microstructure and mechanical properties of AlN-hBN based machinable ceramics prepared by pressureless sintering. J. Eur. Ceram. Soc. 27, 1425 2007

    Article  CAS  Google Scholar 

  28. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande: The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids 48, 641 1987

    Article  CAS  Google Scholar 

  29. G.A. Slack: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 1973

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Takanori Tanaka (Materials Analysis Center, ISIR, Osaka University) for help with XRD measurements. This work was supported by Industrial Technology Research Grant Program from New Energy and Industrial Technology Development Organization (NEDO) and by Research Grant 2007 from The Die and Mold Technology Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Kusunose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusunose, T., Sekino, T., Ando, Y. et al. Fabrication of machinable AlN–BN composites with high thermal conductivity by pressureless sintering turbostatic BN-coated AlN nanocomposite powders. Journal of Materials Research 23, 236–244 (2008). https://doi.org/10.1557/JMR.2008.0022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0022

Navigation