Skip to main content
Log in

Transmission electron microscopy microstructural characterization of Ti–Si–C–N coatings

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new type of Ti–Si–C–N coatings deposited on high-speed steel substrate by means of pulsed direct current (dc) plasma-enhanced chemical vapor deposition was investigated. The as-deposited coatings were characterized systematically by using energy-dispersive x-ray spectroscopy, x-ray diffraction (XRD), transmission electron microscopy (TEM), and microhardness with particular attention paid to the microstructure of the coatings. It has been shown that C content has a profound effect on the microstructure and hardness of coatings. TEM and XRD analyses revealed that these coatings consist of the dominate Ti(C, N) with a silicide (TiSi2, Si3N4, or SiC, depending on the C content in the coatings). The crystallite sizes are in the range of 8–35 nm, which decrease with increasing C content. The Ti–Si–C–N coatings with high C content (25.2–38.6 at.%) possess superhardness (41–48 GPa). This can be attributed to the grain refinement/grain boundary hardening and dispersion hardening of the hard, nanosized crystalline Si3N4 or SiC formed in the deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S. Ma, D. Ma, K. Xu W. Jie: Structural characterization of nanocomposite Ti–Si–N coatings prepared by pulsed dc plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol., B 22, 1694 2004

    Article  CAS  Google Scholar 

  2. Y. Guo, S. Ma K. Xu: Effects of carbon content and annealing temperature on the microstructure and hardness of super hard Ti–Si–C–N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 210, 5240 2007

    Article  Google Scholar 

  3. M. Wittmer, J. Noser H. Melchior: Oxidation kinetics of TiN thin films. J. Appl. Phys. 52(11), 6659 1981

    Article  CAS  Google Scholar 

  4. J-W. He, C-D. Bai, K-W. Xu N-S. Hu: Improving the anticorrosion and mechanical behaviour of PACVD TiN. Surf. Coat. Technol. 74–75, 387 1995

    Article  Google Scholar 

  5. X.Z. Ding, X.T. Zeng, Y.C. Liu, Q. Yang L.R. Zhao: Structure and mechanical properties of Ti–Si–N films deposited by combined DC/RF reactive unbalanced magnetron sputtering. J. Vac. Sci. Technol., A 22, 2351 2004

    Article  CAS  Google Scholar 

  6. J. Bujak, J. Walkowicza J. Kusiński: Influence of the nitrogen pressure on the structure and properties of (Ti,Al)N coatings deposited by cathodic vacuum arc PVD process. Surf. Coat. Technol. 180–181, 150 2004

    Article  Google Scholar 

  7. P. Karvánková, M.G.J. Vepřek-Heijman, M.F. Zawrah S. Vepřek: Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition. Thin Solid Films 467, 133 2004

    Article  Google Scholar 

  8. Y. Otani S. Hofmann: High temperature oxidation behavior of (Ti1−xCrx)N coatings. Thin Solid Films 287, 188 1996

    Article  CAS  Google Scholar 

  9. X. Hu, H. Zhang, J. Dai, G. Li M. Gu: Study on the superhardness mechanism of Ti–Si–N nanocomposite films: Influence of the thickness of the Si3N4 interfacial phase. J. Vac. Sci. Technol., A 23, 114 2005

    Article  CAS  Google Scholar 

  10. S. Veprek S. Reiprich: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64 1995

    Article  CAS  Google Scholar 

  11. S. Hofmann: Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and x-ray photoelectron spectroscopy. Thin Solid Films 193–194, 648 1990

    Article  Google Scholar 

  12. O-N. Park, J.H. Park, S-Y. Yoon, M-H. Lee K.H. Kim: Tribological behavior of Ti–Si–N coating layers prepared by a hybrid system of arc ion plating and sputtering techniques. Surf. Coat. Technol. 179, 83 2004

    Article  CAS  Google Scholar 

  13. A. García-Luis, T.M. Brizuela, J.I. Oñate, J.C. Sánchez-López, D. Martínez-Martínez, C. López-Cartes A. Fernández: Mechanical properties of nanocrystalline Ti–B–(N) coatings produced by DC magnetron sputtering. Surf. Coat. Technol. 200, 734 2005

    Article  Google Scholar 

  14. J-H. Jeon, S.R. Choi, W.S. Chung K.H. Kim: Synthesis and characterization of quaternary Ti–Si–C–N coatings prepared by a hybrid deposition technique. Surf. Coat. Technol. 188–189, 415 2004

    Article  Google Scholar 

  15. J. Musil: Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 125, 322 2000

    Article  CAS  Google Scholar 

  16. PDF Nos. 35-0785, 33-1160, and 29-1131. International Center for Diffraction Data Newton Square, PA 1999

  17. G.M. Bond, I.M. Roberton H.K. Birnbaum: Effect of boron on the mechanism of strain transfer across grain boundaries in Ni3Al. J. Mater. Res. 2, 436 1987

    Article  CAS  Google Scholar 

  18. Z-J. Liu, P.W. Shum Y.G. Shen: Hardening mechanisms of nanocrystalline Ti–Al–N solid solution films. Thin Solid Films 468, 161 2004

    Article  CAS  Google Scholar 

  19. A. Lasalmonie J.L. Strudel: Influence of grain size on the mechanical behavior of some high strength materials. J. Mater. Sci. 21, 1837 1986

    Article  CAS  Google Scholar 

  20. R.A. Masumura, P.M. Hazzledine C.S. Pande: Yield stress of fine grained materials. Acta Mater. 46, 4527 1998

    Article  CAS  Google Scholar 

  21. S.M. Wiederhorn, B.J. Hockey J.D. French: Mechanisms of deformation of silicon nitride and silicon carbide at high temperatures. J. Eur. Ceram. Soc. 19, 2273 1999

    Article  CAS  Google Scholar 

  22. S. Ogata, N. Hirosaki, C. Kocer Y. Shibutal: A comparative ab initio study of the “ideal” strength of single crystal α- and β-Si3N4. Acta Mater. 52, 233 2004

    Article  CAS  Google Scholar 

  23. O. Borrero-López, A. Pajares, A.L. Ortiz F. Guiberteau: Hardness degradation in liquid-phase-sintered SiC with prolonged sintering. J. Eur. Ceram. Soc. 27, 3359 2007

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Science Foundation of China (No. 50671079), the International Key Joint Project of National Science Foundation of China (50420130033), National Key Basic Research Program of China (2004CB619302), Program for New Century Excellent Talents in University of China (NCET-04-0934), Doctorate Foundation of Xi’an Jiaotong University (X020-082062), and Research Program fellowship of Xi’an Jiaotong University.

%One of the authors (Yan Guo) is grateful to assistance of staff and students in the Surface Engineering Group, Department of Metallurgy and Materials at the University of Birmingham, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanshan Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Ma, S., Xu, K. et al. Transmission electron microscopy microstructural characterization of Ti–Si–C–N coatings. Journal of Materials Research 23, 198–203 (2008). https://doi.org/10.1557/JMR.2008.0019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0019

Navigation