Skip to main content
Log in

Magnetic and electrical characteristics in dense Fe–Ni alloy cluster-assembled films prepared by energetic cluster deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fe–Ni alloy cluster-assembled films were obtained by a plasma–gas-condensation-type cluster-deposition method. We studied the magnetic and electrical properties of these assemblies prepared on an electrically grounded substrate [bias voltage (Va) = 0 kV] and on a negatively biased substrate (Va = −20 kV). The packing density and saturation magnetization per volume, Ms, are much larger for the assemblies prepared at Va = −20 kV than those prepared at Va = 0 kV, while the magnetic coercivity, Hc, and electrical resistivity, ρ, are much lower for the assemblies prepared at Va = −20 kV than those prepared at Va = 0 kV. For Ni-rich Fe–Ni alloy cluster-assembled films obtained at Va = −20 kV, the Hc values can become smaller than 160 A/m (the precision limit of our superconducting quantum interference device magnetometer) by adjusting the initial cluster size. The magnetic and electrical properties of Fe–Ni cluster-assembled films are much improved in comparison with those of pure Fe cluster-assembled films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. W. Wernsdorfer, E. BonetOrozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard D. Mailly: Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791 1997

    Article  CAS  Google Scholar 

  2. J. Bansmann, S.H. Baker, C. Binns, J.A. Blackman, J-P. Bucher, J. Dorantes-Dávila, V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K-H. Meiwes-Broer, G.M. Pastor, A. Perez, O. Toulemonde, K.N. Trohidou, J. Tuaillon Y. Xie: Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep. 56, 189 2005

    Article  CAS  Google Scholar 

  3. S. Yamamuro, K. Sumiyama, T.J. Konno K. Suzuki: Structural and magnetic evolution in self-assembling process of nanometer-sized Co clusters. Mater. Trans. 40, 1450 1999

    Article  CAS  Google Scholar 

  4. R. Uyeda: Studies of ultrafine particles in Japan: Crystallography: Methods of preparation and technological applications. Prog. Mater. Sci. 35, 1 1991

    Article  CAS  Google Scholar 

  5. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989

    Article  CAS  Google Scholar 

  6. S. Kashu, E. Fuchita, T. Manabe C. Hayashi: Deposition of ultra fine particles using a gas jet. Jpn. J. Appl. Phys. 23, L910 1984

    Article  Google Scholar 

  7. Y. Sasaki, M. Hyakkai, E. Kita, A. Tasaki, H. Tanimoto Y. Iwamoto: Magnetic properties and Mössbauer study of Fe nanocrystals prepared by the gas-deposition method. J. Appl. Phys. 81, 4736 1997

    Article  CAS  Google Scholar 

  8. Y. Yoshizawa, S. Ogawa K. Yamauchi: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 1988

    Article  CAS  Google Scholar 

  9. K. Suzuki, J.M. Cadogan, V. Sahajwalla, A. Inoue T. Masumoto: Time-temperature-transformation study of a nanocrystalline Fe91Zr7B2 soft magnetic alloy. J. Appl. Phys. 79, 5149 1996

    Article  CAS  Google Scholar 

  10. G. Herzer: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397 1990

    Article  CAS  Google Scholar 

  11. P. Melinon, V. Paillard, V. Dupuis, A. Perez, P. Jensen, A. Hoareau, J.P. Perez, J. Tuaillon, M. Broyer, J.L. Vialle, M. Pellarin, B. Baguenard J. Lerme: From free clusters to cluster-assembled materials. Int. J. Mod. Phys. B9, 339 1995

    Article  Google Scholar 

  12. H. Haberland, M. Karrais, M. Mall Y. Thurner: Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol., A 10, 3266 1992

    Article  CAS  Google Scholar 

  13. S. Yamamuro, K. Sumiyama K. Suzuki: Monodispersed Cr cluster formation by plasma-gas-condensation. J. Appl. Phys. 85, 483 1999

    Article  CAS  Google Scholar 

  14. K. Wegner, P. Piseri, H. Vahedi Tafreshi P. Milani: Cluster beam deposition: A tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 39, R439 2006

    Article  CAS  Google Scholar 

  15. S. Yamamuro, K. Sumiyama, T. Kamiyama K. Suzuki: Morphological and magnetic characteristics of monodispersed Co-cluster assemblies. J. Appl. Phys. 86, 5726 1999

    Article  CAS  Google Scholar 

  16. D.L. Peng, H. Yamada, K. Sumiyama, T. Uchida T. Hihara: Formation and characterization of high-density Fe cluster-assembled films with soft magnetic behaviors. Eur. Phys. J., D 34, 173 2005

    Article  CAS  Google Scholar 

  17. D.L. Peng, H. Yamada, H. Hihara, T. Uchida K. Sumiyama: Dense Fe cluster-assembled films by energetic cluster deposition. Appl. Phys. Lett. 85, 2935 2004

    Article  CAS  Google Scholar 

  18. D.L. Peng, R. Katoh, H. Hihara K. Sumiyama: Soft magnetic properties of high-density Fe cluster-assembled films by energetic cluster deposition. Jpn. J. Appl. Phys. 45, 761 2006

    Article  CAS  Google Scholar 

  19. T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy Noyes Park Ridge, NJ 1988

    Google Scholar 

  20. Y. Qiang, Y. Thurner, Th. Reiners, O. Rattunde H. Haberland: Hard coatings (TiN, TixAl1–xN) deposited at room temperature by energetic cluster impact. Surf. Coat. Technol. 100–101, 27 1998

    Article  Google Scholar 

  21. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners Y. Thurner: Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol., A 12, 2925 1994

    Article  CAS  Google Scholar 

  22. H. Haberland, Z. Insepov M. Moseler: Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys. Rev. B: Condens. Matter 51, 11061 1995

    Article  CAS  Google Scholar 

  23. D. Meyer, M. Faheem, M. Campanell, J. Antony, A. Sharma Y. Qiang: Magnetic nanocrystalline films softened by obliquely accelerating iron nanoclusters. IEEE Trans. Magn. 43, 3010 2007

    Article  CAS  Google Scholar 

  24. R.M. Bozorth: Ferromagnetism IEEE Press New York 1993 102–124

    Book  Google Scholar 

  25. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys Pergamon Press Oxford, UK 1958 683

    Google Scholar 

  26. C. Kittel Introduction to Solid State Physics, 7th ed., (John Wiley & Sons, New York, 1996 17, 457

    Google Scholar 

  27. B.D. Cullity: Introduction to Magnetic Materials Addison-Wesley Reading, MA 1972 387.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Intellectual Cluster Project supported by the Ministry of Education, Science, Culture, and Sports, Japan, Aichi Prefecture, Nagoya City, and Aichi Science and Technology Foundation; a Grant-in-Aid for Scientific Research given by the Ministry of Education, Science, Culture and Sports, Japan; NITECH 21st Century COE Program “World Ceramics Center for Environmental Harmony”; and the Research Encourage Program of Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.L. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, D., Sumiyama, K., Kumagai, K. et al. Magnetic and electrical characteristics in dense Fe–Ni alloy cluster-assembled films prepared by energetic cluster deposition. Journal of Materials Research 23, 189–197 (2008). https://doi.org/10.1557/JMR.2008.0018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0018

Navigation