Skip to main content
Log in

Determination of the effective zero point of contact for spherical nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Accurate determination of the “zero point,” the first contact between an indenter tip and sample surface, has to date remained elusive. In this article, we outline a relatively simple, objective procedure by which an effective zero point can be determined accurately and reproducibly using a nanoindenter equipped with a continuous stiffness measurement option and a spherical tip. The method relies on applying a data shift, which ensures that curves of stiffness versus contact radius are linear and go through the origin. The method was applied to fused silica, sapphire single crystals, and polycrystalline iron with various indenter sizes to a zero-point resolution of ≈2 nm. Errors of even a few nanometers can drastically alter plots and calculations that use the data, including curves of stress versus strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. J.S. Field M.V. Swain: Determining the mechanical-properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 1995

    Article  CAS  Google Scholar 

  2. J.S. Field M.V. Swain: The indentation characterisation of the mechanical properties of various carbon materials: Glassy carbon, coke and pyrolytic graphite. Carbon 34, 1357 1996

    Article  CAS  Google Scholar 

  3. W.C. Oliver G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 2004

    Article  CAS  Google Scholar 

  4. J.L. Bucaille, E. Felder G. Hochstetter: Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test. J. Mater. Sci. 37, 3999 2002

    Article  CAS  Google Scholar 

  5. P. Grau, G. Berg, W. Fraenzel H. Meinhard: Recording hardness testing problems of measurement at small indentation depths. Phys. Status Solidi A 146, 537 1994

    Article  CAS  Google Scholar 

  6. N. Huber E. Tyulyukovskiy: A new loading history for identification of viscoplastic properties by spherical indentation. J. Mater. Res. 19, 101 2004

    Article  CAS  Google Scholar 

  7. Z. Li, K. Herrmann F. Pohlenz: A comparative approach for calibration of the depth measuring system in a nanoindentation instrument. Measurement 39, 547 2006

    Article  Google Scholar 

  8. B. Rother, A. Steiner, D.A. Dietrich, H.A. Jehn, J. Haupt W. Gissler: Depth-sensing indentation measurements with Vickers and Berkovich indenters. J. Mater. Res. 13, 2071 1998

    Article  CAS  Google Scholar 

  9. E. Tyulyukovskiy N. Huber: Neural networks for tip correction of spherical indentation curves from bulk metals and thin metal films. J. Mech. Phys. Solids 55, 391 2007

    Article  CAS  Google Scholar 

  10. T. Chudoba, M. Griepentrog, A. Dück, D. Schneider F. Richter: Young’s modulus measurements on ultra-thin coatings. J. Mater. Res. 19, 301 2004

    Article  CAS  Google Scholar 

  11. T. Chudoba, N. Schwarzer F. Richter: Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surf. Coat. Technol. 127, 9 2000

    Article  CAS  Google Scholar 

  12. A.C. Fischer-Cripps: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200, 4153 2006

    Article  CAS  Google Scholar 

  13. Y-H. Liang, Y. Arai, K. Ozasa, M. Ohashi E. Tsuchida: Simultaneous measurement of nanoprobe indentation force and photoluminescence of InGaAs/GaAs quantum dots and its simulation. Physica E 36, 1 2007

    Article  Google Scholar 

  14. Y.Y. Lim M. Munawar Chaudhri: Indentation of elastic solids with a rigid Vickers pyramidal indenter. Mech. Mater. 38, 1213 2006

    Article  Google Scholar 

  15. V. Linss, N. Schwarzer, T. Chudoba, M. Karniychuk F. Richter: Mechanical properties of a graded B–C–N sputtered coating with varying Young’s modulus: Deposition, theoretical modelling and nanoindentation. Surf. Coat. Technol. 195, 287 2005

    Article  CAS  Google Scholar 

  16. F. Richter, M. Herrmann, F. Molnar, T. Chudoba, N. Schwarzer, M. Keunecke, K. Bewilogua, X.W. Zhang, H.G. Boyen P. Ziemann: Substrate influence in Young’s modulus determination of thin films by indentation methods: Cubic boron nitride as an example. Surf. Coat. Technol. 201, 3577 2006

    Article  CAS  Google Scholar 

  17. C. Ullner: Requirement of a robust method for the precise determination of the contact point in the depth sensing hardness test. Measurement 27, 43 2000

    Article  Google Scholar 

  18. S. Basu, A. Moseson M.W. Barsoum: On the determination of spherical nanoindentation stress–strain curves. J. Mater. Res. 21, 2628 2006

    Article  CAS  Google Scholar 

  19. S. Basu M.W. Barsoum: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves. J. Mater. Res. 22, 2470 2007

    Article  CAS  Google Scholar 

  20. S. Basu, M.W. Barsoum, A.D. Williams T.D. Moustakas: Spherical nanoindentation and deformation mechanisms in free-standing GaN films. J. Appl. Phys. 101, 083522 2007

    Article  Google Scholar 

  21. K.L. Johnson: Contact Mechanics Cambridge Cambridge University Press 1985

    Book  Google Scholar 

  22. J.S. Field M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 1993

    Article  CAS  Google Scholar 

  23. D. Tabor: Hardness of Metals Clarendon Oxford, UK 1951

    Google Scholar 

  24. I.N. Sneddon: The relaxation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965

    Article  Google Scholar 

  25. A.J. Moseson: Spherical nanoindentation: Insights and improvements, including stress–strain curves and effective zero point determination. Master Thesis, Drexel University, 2007

    Google Scholar 

Download references

Acknowledgment

This work was funded by the Army Research Office (ARO) (DAAD19-03-1-0213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Moseson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moseson, A.J., Basu, S. & Barsoum, M.W. Determination of the effective zero point of contact for spherical nanoindentation. Journal of Materials Research 23, 204–209 (2008). https://doi.org/10.1557/JMR.2008.0012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0012

Navigation