Skip to main content
Log in

Hydriding kinetics of ball-milled nanocrystalline MgH2 powders

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The kinetics of hydride formation and decomposition described by semiempirical models generally do not involve particle and grain-size dependence. However, ball-milled nanocrystalline powders usually exhibit log-normal grain-size and particle-size distribution. Considering size dependence, a total reacted function for a multiparticle system has been developed. We show that the shape of the measured reaction fraction curves do not determine unambiguously the rate-controlling mechanism of hydrogen sorption, since the kinetics are strongly affected by the microstructure. With the application the convolutional multiple whole profile fitting procedure for nanocrystalline MgH2, the parameters, e.g., the median and variance of the log-normal grain-size distribution have been determined. Taking these values into account, the reaction constants corresponding to different sorption states are considerably modified compared with values obtained from classical single-particle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE I.
TABLE II.
FIG. 7

Similar content being viewed by others

References

  1. G. Sandrock: A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293–295, 877 1999

    Article  Google Scholar 

  2. E.E. David: An overview of advanced materials for hydrogen storage. J. Mater. Proc. Tech. 162–163, 169 2005

    Article  Google Scholar 

  3. M. Bououdina, D. Grant G. Walker: Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties. Int. J. Hydrogen Energy 31, 177 2006

    Article  CAS  Google Scholar 

  4. R.C. Bowman B. Fultz: Hydrogen storage and other gas-phase applications. MRS Bull. 27, 688 2002

    Article  CAS  Google Scholar 

  5. K.H.J. Buschow, P.C.P. Bouten A.R. Miedema: Hydrides formed from intermetallic compounds of 2 transition-metals—A special-class of ternary alloys. Rep. Prog. Phys. 45, 937 1982

    Article  Google Scholar 

  6. A.Y. Yermakov, N.V. Mushnikov, M.A. Uimin, V.S. Gaviko, A.P. Tankeev, A.V. Skripov, A.V. Soloninin A.L. Buzlukov: Hydrogen reaction kinetics of Mg-based alloys synthesized by mechanical milling. J. Alloys Compd. 425, 367 2006

    Article  CAS  Google Scholar 

  7. R.A. Varin, T. Czujko, Ch. Chiu Z. Wronski: Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J. Alloys Compd. 424, 356 2006

    Article  CAS  Google Scholar 

  8. H. Imamura, K. Masanari, M. Kusuhara, H. Katsumoto, T. Sumi Y. Sakata: High hydrogen storage capacity of nanosized magnesium synthesized by high-energy ball milling. J. Alloys Compd. 386, 211 2005

    Article  CAS  Google Scholar 

  9. L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen R. Schulz: Nanocrystalline hydrogen absorbing alloys. Mater Sci. Forum 225, 853 1996

    Article  Google Scholar 

  10. G. Liang, S. Boily, J. Huot, A. Van Neste R. Schulz: Mechanical alloying and hydrogen absorption properties of the Mg–Ni system. J. Alloys Compd. 276, 302 1998

    Google Scholar 

  11. G. Liang, S. Boily, J. Huot, A. Van Neste R. Schulz: Hydrogen absorption properties of a mechanically milled Mg–50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998

    Article  CAS  Google Scholar 

  12. G. Liang: Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd. 370, 123 2004

    Article  CAS  Google Scholar 

  13. W. Oelerich, T. Klassen R. Bormann: Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 315, 237 2001

    Article  CAS  Google Scholar 

  14. G. Barkhordarian, T. Klassen R. Borman: Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. J. Alloys Compd. 49, 213 2003

    CAS  Google Scholar 

  15. G. Barkhordarian, T. Klassen R. Borman: Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364, 242 2004

    Article  CAS  Google Scholar 

  16. R.A. Varin, T. Czujko Z. Wronski: Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 17, 3856 2006

    Article  CAS  Google Scholar 

  17. Á. Révész, D. Fátay, D. Zander T. Spassov: Influence of particle size on the hydrogen sorption properties of ball-milled MgH2 with Nb2O5 as catalyst. J. Metast. Nanocr. Mater. 24–25, 447 2005

    Google Scholar 

  18. D. Fátay, Á. Révész T. Spassov: Particle size and catalytic effect on the dehydriding of MgH2. J. Alloys Compd. 399, 237 2005

    Article  Google Scholar 

  19. Y. Asakuma, S. Miyauchi, T. Yamamoto, H. Aoki T. Miura: Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method. Int. J. Hydrogen Energy 28, 529 2003

    Article  CAS  Google Scholar 

  20. K.C. Chou, Q. Li, Q. Lin, L.J. Jiang K.D. Xu: Kinetics of absorption and desorption of hydrogen in alloy powder. Int. J. Hydrogen Energy 30, 301 2005

    Article  CAS  Google Scholar 

  21. M.H. Mintz Y. Zeiri: Hydriding kinetics of powders. J. Alloys Compd. 216, 159 1994

    Article  Google Scholar 

  22. G. Barkhordarian, T. Klassen R. Borman: Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalysed with different Nb2O5 contents. J. Alloys Compd. 407, 249 2006

    Article  CAS  Google Scholar 

  23. F. Schweppe, M. Martin E. Fromm: Model on hydride formation describing surface control, diffusion control and transition regions. J. Alloys Compd. 261, 254 1997

    Article  CAS  Google Scholar 

  24. L. Bloch: The kinetics of a moving metal hydride layer. J. Alloys Compd. 312, 135 2000

    Article  CAS  Google Scholar 

  25. I.E. Gabis, A.P. Voit, E.A. Evard, Y.V. Zaika, I.A. Chernov V.A. Yartys: Kinetics of hydrogen desorption from the powders of metal hydrides. J. Alloys Compd. 404–406, 312 2005

    Article  Google Scholar 

  26. P.W.M. Jacobs F.C. Tompkins: Classification and theory of solid reactions in Chemistry of the Solid State, edited by W.E. Garner Butterworth London 1955 184–212

    Google Scholar 

  27. M. Avrami: Kinetics of phase change II. J. Chem. Phys. 8, 212 1940

    Article  CAS  Google Scholar 

  28. C.E. Krill R. Birringer: Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis. Philos. Mag. 77, 621 1998

    Article  CAS  Google Scholar 

  29. G.K. Williamson W.H. Hall: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 1953

    Article  CAS  Google Scholar 

  30. B.E. Warren B.L. Averbach: The effect of cold-work distortion on x-ray patterns J. Appl. Phys. 21, 55 1950

    Article  Google Scholar 

  31. J.G.M. van Berkum, A.C. Vermuelen, R. Delhez, T.H. de Keijser E.J. Mittemeijer: Applicabilities of the Warren-Averbach analysis and an alternative analysis for separation of size and strain broadening. J. Appl. Crystallogr. 27, 345 1994

    Article  Google Scholar 

  32. T. Ungár A. Borbély: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173 1996

    Article  Google Scholar 

  33. G. Ribárik, J. Gubicza T. Ungár: Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387–389, 343 2004

    Article  Google Scholar 

  34. T. Ungár, I. Dragomir, Á. Révész A. Borbély: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992 1999

    Article  Google Scholar 

  35. T. Ungár G. Tichy: The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status. Solidi A 171, 425 1999

    Article  Google Scholar 

  36. T. Ungár, J. Gubicza, G. Ribárik A. Borbély: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298 2001

    Article  Google Scholar 

  37. JCPDS No. 12-0697. International Center for Diffraction Data Newton Square PA 1960

  38. JCPDS No. 35-1184. International Center for Diffraction Data Newton Square PA 1980

  39. D. Fátay, T. Spassov, P. Delchev, G. Ribárik Á. Révész: Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling. Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2006.12.018, 2007

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work has been supported by the National Research and Development Fund (3A-058/04) and by the Bulgarian Scientific Research Fund under Grant BYX-14/05. The authors acknowledge the assistance of G. Ribárik in the evaluation of the XRD profiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Révész.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Révész, Á., Fátay, D. & Spassov, T. Hydriding kinetics of ball-milled nanocrystalline MgH2 powders. Journal of Materials Research 22, 3144–3151 (2007). https://doi.org/10.1557/JMR.2007.0387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0387

Navigation