Skip to main content
Log in

Magnetic, electrical, and thermal characterization of La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 1)

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure, magnetization M, resistivity ρ, thermoelectric power S, and thermal conductivity κ in La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 1) have been investigated systematically. The samples with x = 0 and x = 1 have a rhombohedral lattice with space group R¯3C, while the samples with x = 0.25, 0.50, and 0.75 have an orthorhombic lattice with space group Pbnm. The samples of 0 ≤ x ≤ 0.75 undergo the paramagnetic–ferromagnetic (PM–FM) phase transition. Based on the temperature dependence of susceptibility, a combination of the high-spin (HS) state for Co2+ and the low-spin (LS) state for Co3+ can be determined. The metal–insulator transitions (MIT) observed for x = 0 sample are completely suppressed with Co-doping, and ρ(T) displays semiconducting behavior within the measured temperature region for x > 0 samples. As x ⩾ 0.25, the huge magnitude of Seebeck coefficient at low temperatures is observed, which is suggested to originate from the spin-state transition of Co3+ ions from intermediate-spin (IS) state or (HS) state to (LS) state and the configurational entropy of charge carriers enhanced by their spin and orbital degeneracy between Co2+ and Co3+ sites. Particularly, S(T) of x = 0.50 and 0.75 samples appears an anomalous peak, which is suggested to be related to the contribution of phonon drag. Similar to M(T) and ρ(T), all results of S(T) are discussed according to the variations of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, based on the analysis of the temperature dependence of S(T) and ρ(T), the transport mechanism can be determined in the different temperature region. As to thermal conduction κ(T), the changes of κ with Co-doping is suggested to come from the combined effect due to the suppression of local Mn3+O6 Jahn–Teller (JT) lattice distortion because of the substitution of non JT Co3+ ions with LS and HS states for JT Mn3+ ions, which results in the increase of κ, and the introduction of the disorder due to Co-doping, which contributes to the decrease of κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE II.
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh L.H. Chen: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 1994

    Article  CAS  Google Scholar 

  2. A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima Y. Tokura: A structural phase transition induced by an external magnetic field. Nature 373, 407 1995

    Article  CAS  Google Scholar 

  3. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz K. Samwer: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 1993

    Article  Google Scholar 

  4. C. Zener: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 1951

    Article  CAS  Google Scholar 

  5. J.B. Goodenough: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564 1955

    Article  CAS  Google Scholar 

  6. A.J. Millis, P.B. Littlewood B.I. Shraiman: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 1995

    Article  CAS  Google Scholar 

  7. P. Mandal S. Das: Transport properties of Ce-doped RMnO3 (R= La, Pr, and Nd) manganites. Phys. Rev. B 56, 15073 1997

    Article  CAS  Google Scholar 

  8. S. Roy N. Ali: Charge transport and colossal magnetoresistance phenomenon in La1−xZrxMnO3. J. Appl. Phys. 89, 7425 2001

    Article  CAS  Google Scholar 

  9. G.T. Tan, S.Y. Dai, P. Duan, Y.L. Zhou, H.B. Lu Z.H. Chen: Colossal magnetoresistance behavior and ESR studies of La1−xTexMnO3 (0.04 ≤ x ≤ 0.2). Phys. Rev. B 68, 014426 2003

    Article  Google Scholar 

  10. G.T. Tan, S.Y. Dai, P. Duan, Y.L. Zhou, H.B. Lu Z.H. Chen: Structural, electric and magnetic properties of the electron-doped manganese oxide: La1−xTexMnO3 (x = 0.1, 0.15). J. Appl. Phys. 93, 5480 2003

    Article  CAS  Google Scholar 

  11. S.R. English, J. Wu C. Leighton: Thermally excited spin-disorder contribution to the resistivity of LaCoO3. Phys. Rev. B 65, 220407 2002

    Article  Google Scholar 

  12. N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj C.N.R. Rao: Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0.7Ca0.3Mn1−xCoxO3 system. Phys. Rev. B 56, 1345 1997

    Article  CAS  Google Scholar 

  13. C.M. Srivastava, S. Banerjee, T.K. GunduRao, A.K. Nigam D. Bahadur: Evidence of spin transition and charge order in cobalt substituted La0.7Ca0.3MnO3. J. Phys.: Condens. Matter 15, 2375 2003

    CAS  Google Scholar 

  14. G.H. Zheng, Y.P. Sun, X.B. Zhu W.H. Song: Structure, magnetic, and transport properties of the Co-doped manganites in La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 0.25). Solid State Commun. 137, 326 2006

    Article  CAS  Google Scholar 

  15. D.B. Wiles R.A. Young: A new computer program for Rietveld analysis of x-ray powder diffraction patterns. J. Appl. Crystallogr. 14, 149 1981

    Article  CAS  Google Scholar 

  16. K. Ghosh, S.B. Ogale, R. Ramesh, R.L. Greene, T. Venkatesan, K.M. Gapchup, Ravi Bathe S.I. Patil: Transition-element doping effects in La0.7Ca0.3MnO3. Phys. Rev. B 59, 533 1999

    Article  CAS  Google Scholar 

  17. S. Satpathy, Z.S. Popovic F.R. Vukajlovic: Electronic structure of the perovskite oxides: La1−xCaxMnO3. Phys. Rev. Lett. 75, 960 1996

    Article  Google Scholar 

  18. S. Blundell: Magnetism in Condensed Matter Oxford University Press New York 2001 272

    Google Scholar 

  19. S. de Brion, F. Ciorcas, G. Chouteau, P. Lejay, P. Radaelli C. Chaillout: Magnetic and electric properties of La1−δMnO3. Phys. Rev. B 59, 1304 1999

    Article  Google Scholar 

  20. A.A. Taskin Y. Ando: Electron–hole asymmetry in GdBaCo2O5+x: Evidence for spin blockade of electron transport in a correlated electron system. Phys. Rev. Lett. 95, 176603 2005

    Article  CAS  Google Scholar 

  21. L. Pi, L. Zheng Y. Zhang: Transport mechanism in polycrystalline La0.825Sr0.175Mn1−xCuxO3. Phys. Rev. B 61, 8917 2000

    Article  CAS  Google Scholar 

  22. P. Mandal: Temperature and doping dependence of the thermopower in LaMnO3. Phys. Rev. B 61, 14675 2000

    Article  CAS  Google Scholar 

  23. R. Ang, W.J. Lu, R.L. Zhang, B.C. Zhao, X.B. Zhu, W.H. Song Y.P. Sun: Effects of Co doping in bilayered manganite LaSr2Mn2O7: Resistivity, thermoelectric power, and thermal conductivity. Phys. Rev. B 72, 184417 2005

    Article  Google Scholar 

  24. P.M. Chaikin G. Beni: Thermopower in the correlated hopping regime. Phys. Rev. B 13, 647 1976

    Article  CAS  Google Scholar 

  25. W. Koshibae, K. Tsutsui S. Mackawa: Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 2000

    Article  CAS  Google Scholar 

  26. N.F. Mott E.A. Davis: Electronic Processes in Non-crystalline Materials 2 ed. Oxford University Press New York 1979 604 pp

    Google Scholar 

  27. S. Uhlenbruck, B. Buchner, R. Gross, A. Freimuth, A. Maria Leon de Guevara A. Revcolevschi: Thermopower and anomalous heat transport in La0.85Sr0.15MnO3. Phys. Rev. B 57, 5571 1998

    Article  Google Scholar 

  28. A. Asamitsu, Y. Moritomo Y. Tokura: Thermoelectric effect in La1−xSrxMnO3. Phys. Rev. B 53, 2952 1996

    Article  Google Scholar 

  29. R.D. Barnard: Thermoelectricity in Metals and Alloys Taylor and Francis London 1972

    Google Scholar 

  30. M. Jaime, M.B. Salamon, K. Pettit, M. Rubinstein, R.E. Treece, J.S. Horwitz D.B. Chrisey: Magnetothermopower in La0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 68, 1576 1996

    Article  Google Scholar 

  31. I.P. Zvyagin, I.A. Kurova N.N. Ormont: Variable range hopping in hydrogenated amorphous silicon. Phys. Status Solidi C 1, 101 2004

    Article  Google Scholar 

  32. G. Jeffrey Snyder, R. Hiskes, S. Dicarolis, M.R. Beasley T.H. Geballe: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 1996

    Article  CAS  Google Scholar 

  33. A. Banerjee, S. Pal, S. Bhattacharya, B.K. Chauhuri H.D. Yang: Magnetoresistance and magnetothermoelectric power of La0.5Pb0.5Mn1−xCrxO3. Phys. Rev. B 64, 104428 2001

    Article  Google Scholar 

  34. I.P. Zvyagin: Hopping Transport in Solids, edited by M. Pollak and B. Shklovskii (North-Holland, Amsterdam 1991 Vol. 28, Chap. 5, pp. 143–174

    Article  Google Scholar 

  35. M. Matsukawa, M. Narita, T. Nishimura, M. Yoshizawa, M. Apostu, R. Suryanarayanan, A. Revcolevschi, K. Itoh N. Kobayashi: Anisotropic phonon conduction and lattice distortions in colossal-magnetoresistance bilayer manganite (La1−zPrz)1.2Sr1.8Mn2O7 (z= 0, 0.2, 0.4, and 0.6) single crystals. Phys. Rev. B 67, 104433 2003

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research under Contract No. 2007CB925002, and the National Nature Science Foundation of China (Contract Nos. 10474100 and 50672099), and Director’s Fund of Hefei Institutes of Physical Science, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ang, R., Sun, Y.P., Zheng, G.H. et al. Magnetic, electrical, and thermal characterization of La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 1). Journal of Materials Research 22, 2943–2952 (2007). https://doi.org/10.1557/JMR.2007.0379

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0379

Navigation