Skip to main content
Log in

The depth distribution of residual stresses in (Ti,Al)N films: Measurement and analysis

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method is introduced to determine the depth distribution of the residual stresses in (Ti,Al)N films. The films were gradually stripped by chemical corrosion, an optical system was designed to test the curvature change of the specimens, and the depth distribution of the residual stresses was calculated. The results show that the residual stresses increase gradually from the interface of film/substrate and reach a maximum value at the middle region, then decrease until the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S. Paldey S.C. Deevi: Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng., A 342, 58 2003

    Article  Google Scholar 

  2. X.L. Peng T.W. Clyne: Mechanical stability of DLC films on metallic substrates: Part I—Film structure and residual stress levels. Thin Solid Films 312, 207 1998

    Article  CAS  Google Scholar 

  3. E.L. Haase: The determination of lattice parameters and strains in stressed thin films using x-ray diffraction with Seeman–Bohlin focusing. Thin Solid Films 124, 283 1985

    Article  CAS  Google Scholar 

  4. G.G. Stoney The tension of metallic films deposited by electrolysis. Proc. R. Soc. London Ser. A, 82, 172 (1909)

    Article  CAS  Google Scholar 

  5. C.H. Ma, J.H. Huang H. Chen: Residual stress measurement in textured thin film by grazing-incidence x-ray diffraction. Thin Solid Films 418, 73 2002

    Article  CAS  Google Scholar 

  6. C.M. Suh, B.W. Hwang K.R. Kim: Effect of ceramic coating thickness on residual stress and fatigue characteristic of 1Cr–1Mo–0.25V steel. Int. J. Mod. Phys. B 16(1–2), 181 2002

    Article  CAS  Google Scholar 

  7. L.A. Donohue, D.B. Lewis, W.D. Munz, M.M. Stack, S.B. Lyon, H.W. Wang D. Rafaja: The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates. Vacuum 55(2), 109 1999

    Article  CAS  Google Scholar 

  8. E. Zoestbergen, N.J.M. Carvalho J.T.M. De Hosson: Stress state or TiN/TiAlN PVD multilayers. Surf. Eng. 17(1), 29 2001

    Article  CAS  Google Scholar 

  9. M.R. Terner, P. Hedstrom, J. Almer, J. Ilavsky M. Oden: Residual stress evolution during decomposition of Ti(1−x)Al(x)N coatings using high-energy x-rays. Mater. Sci. Forum (Residual Stresses VII) 524–525, 619 2006

    Article  Google Scholar 

  10. H. Windischmann K.J. Gray: Stress measurement of CVD diamond films. Diamond Relat. Mater. 4, 837 1995

    Article  CAS  Google Scholar 

  11. G.J. Leusink, T.G.M. Oosterlaken, G.C.A.M. Janssen S. Radelaar: In situ sensitive measurement of stress in thin films. Rev. Sci. Instrum. 63, 3143 1992

    Article  CAS  Google Scholar 

  12. S.G. Malhotra, Z.U. Rek, S.M. Yalisove J.C. Bilello: Analysis of thin film stress measurement techniques. Thin Solid Films 301, 45 1997

    Article  CAS  Google Scholar 

  13. Ch. Genzel W. Reimers: A study of x-ray residual stress gradient analysis in thin layers with strong fibre texture. Phys. Status Solidi A 166, 751 1998

    Article  CAS  Google Scholar 

  14. W.H. Xu, D. Lu T.Y. Zhang: Determination of residual stresses in Pb(Zr0.53Ti0.47)O3 thin films with Raman spectroscopy. Appl. Phys. Lett. 79, 4112 2002

    Article  Google Scholar 

  15. D.S. Rickerby, A.M. Jones B.A. Bellamy: Internal stress in titanium nitride coatings: Modelling of complex stress systems. Surf. Coat. Technol. 36, 661 1988

    Article  CAS  Google Scholar 

  16. R.Y. Fillit A.J. Perry: Residual stress and x-ray elastic constants in highly textured physically vapor deposited coatings. Surf. Coat. Technol. 36, 647 1988

    Article  CAS  Google Scholar 

  17. P. Danesh, B. Pantchev, D. Grambole B. Schmidt: Depth distributions of hydrogen and intrinsic stress in a-Si:H films prepared from hydrogen-diluted silane. J. Appl. Phys. 90, 3065 2001

    Article  CAS  Google Scholar 

  18. S. Jeelani, S. Biswas R. Natarajan: Effect of cutting speed and tool rake angle on residual stress distribution in machining 2024-T351 aluminium alloy—Unlubricated conditions. J. Mater. Sci. 21, 2705 1986

    Article  Google Scholar 

  19. A.C. Vlasveld, S.G. Harris, E.D. Doyle, D.B. Lewis W.D. Munz: Characterisation and performance of partially filtered arc TiAlN coatings. Surf. Coat. Technol. 149, 217 2002

    Article  CAS  Google Scholar 

  20. F. Hollstein, R. Wiedemann J. Scholz: Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surf. Coat. Technol. 162, 261 2003

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 50471072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, SS., Du, H., Hua, WG. et al. The depth distribution of residual stresses in (Ti,Al)N films: Measurement and analysis. Journal of Materials Research 22, 2659–2662 (2007). https://doi.org/10.1557/JMR.2007.0363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0363

Navigation