Skip to main content
Log in

Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Instrumented indentation is often used in the study of small-scale mechanical behavior of “soft” matters that exhibit viscoelastic behavior. A number of techniques have recently been proposed to obtain the viscoelastic properties from indentation load–displacement curves. In this study, we examine the relationships between initial unloading slope, contact depth, and the instantaneous elastic modulus for instrumented indentation in linear viscoelastic solids using either conical or spherical indenters. In particular, we study the effects of “hold-at-the-peak-load” and “hold-at-the-maximum-displacement” on initial unloading slopes and contact depths. We then discuss the applicability of the Oliver–Pharr method (Refs. 29, 30) for determining contact depth that was originally proposed for indentation in elastic and elastic-plastic solids and recently modified by Ngan et al. (Refs. 20–23) for viscoelastic solids. The results of this study should help facilitate the analysis of instrumented indentation measurements in linear viscoelastic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Lee: Stress analysis in visco-elastic bodies. Quarterly Appl. Math. 13, 183 (1955).

    Article  Google Scholar 

  2. J.R.M. Radok: Visco-elastic stress analysis. Quarterly Appl. Math. 15, 198 (1957).

    Article  Google Scholar 

  3. E.H. Lee and J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  4. S.C. Hunter: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219 (1960).

    Article  Google Scholar 

  5. G.A.C. Graham: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27 (1965).

    Article  Google Scholar 

  6. G.A.C. Graham: Contact problem in linear theory of viscoelsticity when time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 5, 495 (1967).

    Article  Google Scholar 

  7. W.H. Yang: Contact problem for viscoelastic bodies. J. Appl. Mech. 33, 395 (1966).

    Article  Google Scholar 

  8. T.C.T. Ting: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).

    Article  Google Scholar 

  9. T.C.T. Ting: Contact problems in linear theory of viscoelasticity. J. Appl. Mech. 35, 248 (1968).

    Article  Google Scholar 

  10. B.J. Briscoe, L. Fiori and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D, Appl. Phys. 31, 2395 (1998).

    Article  CAS  Google Scholar 

  11. P.L. Larrson and S. Carlsson: On microindentation of viscoelastic polymers. Polym. Testing 17, 49 (1998).

    Article  Google Scholar 

  12. L. Cheng, X. Xia, W. Yu, L.E. Scriven and W.W. Gerberich: Flat-punch indentation of viscoelastic material. J. Polym. Sci. B, Polym. Phys 38, 10 (2001).

    Article  Google Scholar 

  13. S. Shimizu, T. Yanagimoto and M. Sakai: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).

    Article  CAS  Google Scholar 

  14. M. Sakai and S. Shimizu: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).

    Article  CAS  Google Scholar 

  15. M. Sakai: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A82, 1841 (2002).

    Article  Google Scholar 

  16. M.L. Oyen and R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).

    Article  CAS  Google Scholar 

  17. M.R. VanLandingham: Review of instrumented indentation. J. Res. Nat. Inst. Stand. Technol. 108, 249 (2003).

    Article  Google Scholar 

  18. H. Lu, B. Wang, J. Ma, G. Huang and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Dependent Mater. 7, 189 (2003).

    Article  Google Scholar 

  19. M.V.R. Kumar and R. Narasimhan: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088 (2004).

    Google Scholar 

  20. G. Feng and A.H.W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  21. A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  22. B. Tang and A.H.W. Ngan: Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).

    Article  CAS  Google Scholar 

  23. A.H.W. Ngan, H.T. Wang, B. Tang and K.Y. Sze: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42, 1831 (2005).

    Article  Google Scholar 

  24. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R44, 91 (2004).

    Google Scholar 

  25. Y.T. Cheng and C.M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).

    Article  CAS  Google Scholar 

  26. Y.T. Cheng and C.M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater. Sci. Eng., A (in press).

  27. Y.T. Cheng and C.M. Cheng: A general relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Appl. Phys. Lett. 87, 111914 (2005).

    Article  Google Scholar 

  28. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  29. G.M. Pharr, W.C. Oliver and F.R. Brotzen: On the generality of the relationship between contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  30. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  31. S.P. Timoshenko and J.N. Goodier: Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).

    Google Scholar 

  32. A.E.H. Love: Boussinesq’s problem for a rigid cone. Quart. J. Math. 10, 161 (1939).

    Article  Google Scholar 

  33. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  34. C.M. Cheng and Y.T. Cheng: On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile. Appl. Phys. Lett. 71, 2623 (1997).

    Article  CAS  Google Scholar 

  35. W.N. Findley, J.S. Lai and K. Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover, New York, 1976).

    Google Scholar 

  36. G.T. Mase and G.E. Mase: Continuum Mechanics for Engineers, 2nd ed. (CRC, Boca Raton, FL, 1999).

    Book  Google Scholar 

  37. W. Ni, Y.T. Cheng, C.M. Cheng and D.S. Grummon: An energy based method for analyzing instrumented spherical indentation experiments. J. Mater. Res. 19, 149 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Tse Cheng.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, YT., Ni, W. & Cheng, CM. Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. Journal of Materials Research 20, 3061–3071 (2005). https://doi.org/10.1557/JMR.2005.0389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0389

Navigation