Skip to main content
Log in

Uniaxial and biaxial mechanical behavior of human amnion

  • Outstanding Meeting Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Chorioamnion, the membrane surrounding a fetus during gestation, is a structural soft tissue critical for maintaining a successful pregnancy and delivery. However, the mechanical behavior of this tissue membrane is poorly understood. The structural component of chorioamnion is the amnion sublayer, which provides the membrane’s mechanical integrity via a dense collagen network and is the focus of this investigation. Amnion uniaxial and planar equi-biaxial tension testing was performed using cyclic loading and stress-relaxation. Cyclic testing demonstrated dramatic energy dissipation in the first cycle followed by less hysteresis on subsequent cycles. Fractional energy dissipation per cycle was strain dependent, with greatest dissipation at small strain levels. Stress-relaxation testing demonstrated a level-dependent response and continued relaxation after long relaxation times. A nonlinear viscoelastic (separable) hereditary integral approach was inadequate to model the amnion response due to intrinsic coupling of the strain- and time-dependent responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Schmidt The amniotic fluid compartment: The fetal habitat. Advances in Anatomy, Embryology, and Cell Biology 127, (Springer-Verlag, Berlin, Germany, 1992).

  2. B. Mercer: Preterm premature rupture of the membranes. Obstet. Gynecol. 101, 178 (2003).

    Google Scholar 

  3. Bryant-G.D. Greenwood: The extracellular matrix of the human fetal membranes: Structure and function. Placenta 19, 1 (1998).

    Article  Google Scholar 

  4. H. Oxlund, R. Helmig, J.T. Halaburt and N. Uldbjerg: Biomechanical analysis of human chorioamniotic membranes. Eur. J. Obstet. Gynecol. Reprod. Biol. 34, 247 (1990).

    Article  CAS  Google Scholar 

  5. W.J. Polzin and K. Brady: Mechanical factors in the etiology of premature rupture of the membranes. Clin. Obstet. Gynecol. 34, 702 (1991).

    Article  CAS  Google Scholar 

  6. M.L. Oyen, S.E. Calvin and R.F. Cook: Uniaxial stress-relaxation and stress-strain responses of human amnion. J. Mater. Sci.-Mater. Med. 15, 619 (2004).

    Article  CAS  Google Scholar 

  7. R. Helmig, H. Oxlund, L.K. Petersen and N. Uldbjerg: Different biomechanical properties of human fetal membranes obtained before and after delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 48, 183 (1993).

    Article  CAS  Google Scholar 

  8. J.P. Lavery and C.E. Miller: The effect of labor on the rheologic response of chorioamniotic membranes. Obstet. Gynecol. 50, 467 (1977).

    CAS  Google Scholar 

  9. J.P. Lavery, C.E. Miller and R.D. Knight: The effect of labor on the rheologic response of chorioamniotic membranes. Obstet. Gynecol. 60, 87 (1982).

    CAS  Google Scholar 

  10. M.L. Oyen, R.F. Cook and S.E. Calvin: Mechanical failure of human fetal membrane tissues. J. Mater. Sci.-Mater. Med. 15, 651 (2004).

    Article  CAS  Google Scholar 

  11. E.A. Schober, R.P. Kusy and D.A. Savitz: Resistance of fetal membranes to concentrated force applications and reconciliation of puncture and burst testing. Ann. Biomed. Eng. 22, 540 (1994).

    Article  CAS  Google Scholar 

  12. E.K. Pressman, J.L. Cavanaugh and J.R. Woods: Physical properties of the chorioamnion throughout gestation. Am. J. Obstet. Gynecol. 187, 672 (2002).

    Article  Google Scholar 

  13. W.N. Findley, J. Lai and K. Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover, New York, 1989).

    Google Scholar 

  14. Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. (Springer-Verlag, New York, 1993).

    Book  Google Scholar 

  15. Oyen-M. Tiesma and R.F. Cook: Technique for estimating the fracture resistance of cultured neocartilage. J. Mater. Sci.-Mater. Med. 12, 327 (2001).

    Article  Google Scholar 

  16. R.C. Haut and R.W. Little: A constitutive equation for collagen fibers. J. Biomech. 5, 423 (1972).

    Article  CAS  Google Scholar 

  17. M.K. Toppozada, N.A. Sallam, A.A. Gaafar and K.M. el-Kashlan: Role of repeated stretching in the mechanism of timely rupture of the membranes. Am. J. Obstet. Gynecol. 108, 243 (1970).

    Article  CAS  Google Scholar 

  18. M.G. Dunn and F.H. Silver: Viscoelastic behavior of human connective tissues: Relative contribution of viscous and elastic components. Connect. Tissue Res. 12, 59 (1983).

    Article  CAS  Google Scholar 

  19. M. Oyen-Tiesma and R.F. Cook: Solution-mediated stress relaxation of an artificial cartilage, in Soc Exper Mech 2001 Annual Meeting Proc, 234–236 (2001).

    Google Scholar 

  20. C.P. Weiner, J. Heilskov, G. Pelzer, S. Grant, K. Wenstrom and R.A. Williamson: Normal values for human umbilical venous and amniotic fluid pressures and their alteration by fetal disease. Am. J. Obstet. Gynecol. 161, 714 (1989).

    Article  CAS  Google Scholar 

  21. O.H. Harmanli, R.J. Wapner and J.F. Lontz: Efficacy of fibrin glue for in vitro sealing of human chorioamniotic membranes. J. Reprod. Med. 43, 986 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Additional information

This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium Y Proceedings, Vol. 844.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyen, M.L., Cook, R.F., Stylianopoulos, T. et al. Uniaxial and biaxial mechanical behavior of human amnion. Journal of Materials Research 20, 2902–2909 (2005). https://doi.org/10.1557/JMR.2005.0382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0382

Navigation