Skip to main content
Log in

Restructuring tungsten thin films into nanowires and hollow square cross-section microducts

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the growth of nanowires and unusual hollow microducts of tungsten oxide by thermal treatment of tungsten films in a radio frequency H2/Ar plasma at temperatures between 550 and 620 °C. Nanowires with diameters of 10–30 nm and lengths between 50 and 300 nm were formed directly from the tungsten film, while under certain specific operating conditions hollow microducts having edge lengths∼0.5 μm and lengths between 10 and 200 μm were observed. Presence of a reducing gas such as H2 was crucial in growing these nanostructures as were trace quantities of oxygen, which was necessary to form a volatile tungsten species. Preferential restructuring of the film surface into nanowires or microducts appeared to be influenced significantly by the rate of mass transfer of gas-phase species to the surface. Nanowires were also observed to grow on tungsten wires under similar conditions. A surface containing nanowires, annealed at 500 °C in air, exhibited the capability of sensing trace quantities of nitrous oxides (NOx).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).

    Article  CAS  Google Scholar 

  2. C.N.R. Rao, F.L. Deepak, G. Gundiah and A. Govindaraj: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).

    Article  CAS  Google Scholar 

  3. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  4. R.B.R.C. Haddon, (ed.), Special Issue on Carbon Nanotubes. Acc. Chem. Res. 35, 997 (2002).

  5. Z.W. Pan, Z.R. Dai and Z.L. Wang: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).

    Article  CAS  Google Scholar 

  6. S. Matsui and Y. Ochiai: Focused ion beam applications to solid state devices. Nanotechnology 7, 247 (1996).

    Article  CAS  Google Scholar 

  7. B. Gates, B. Mayers, B. Cattle and Y. Xia: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 12, 219 (2002).

    Article  CAS  Google Scholar 

  8. Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu and X. Zhang: A simple method to synthesize nanowires. Chem. Mater. 14, 3564 (2002).

    Article  CAS  Google Scholar 

  9. J.C. Hulteen and C.R. Martin: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).

    Article  CAS  Google Scholar 

  10. C. Mu, Y. Yu, R. Wang, K. Wu, D. Xu and G. Guo: Uniform metal nanotube arrays by multistep template replication and electrodeposition. Adv. Mater. 16, 1550 (2004).

    Article  CAS  Google Scholar 

  11. E.C. Walter, K. Ng, M.P. Zach, R.M. Penner and F. Favier: Electronic devices from electrodeposited metal nanowires. Microelectron. Eng. 61–62, 555 (2002).

    Article  Google Scholar 

  12. E. Tosatti and S. Prestipino: Weird gold nanowires. Science 289, 561 (2000).

    Article  CAS  Google Scholar 

  13. Y.H. Lee, C.H. Choi, Y.T. Jang, E.K. Kim, B.K. Ju, N.K. Min and J.H. Ahn: Tungsten nanowires and their field electron-emission properties. Appl. Phys. Lett. 81, 745 (2002).

    Article  CAS  Google Scholar 

  14. G. Gu, B. Zheng, W.Q. Han, S. Roth and J. Liu: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 (2002).

    Article  CAS  Google Scholar 

  15. J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She and Z.L. Wang: Large area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field-emission properties. Adv. Mater. 15, 1835 (2003).

    Article  CAS  Google Scholar 

  16. J. Liu, Y. Zhao and Z. Zhang: Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods. J. Phys.: Cond. Mater. 15, 453 (2003).

    Google Scholar 

  17. S. Vaddiraju, H. Chandrasekaran and M. Sunkara: Vapor phase synthesis of tungsten nanowires. J. Am. Chem. Soc. 125, 10792 (2003).

    Article  CAS  Google Scholar 

  18. F. Okuyama: Crystalline tungsten grown by reducing vapor-deposited tungsten oxide. J. Cryst. Growth 38, 103 (1977).

    Article  CAS  Google Scholar 

  19. D. Veblen and J. Post: A TEM study of fibrous cuprite (chalcotrichite): Microstructures and growth mechanisms. Am. Mineral. 68, 790 (1983).

    CAS  Google Scholar 

  20. V.K. Sarin: Morphological changes occurring during the reduction of WO3. J. Mater. Sci. 10, 593 (1975).

    Article  CAS  Google Scholar 

  21. W.B. Hu, Y.Q. Zhu, W.K. Hsu, B.H. Chang, M. Terrones, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto and D.R.M. Walton: Generation of hollow crystalline tungsten oxide fibers. Appl. Phys. A 70, 231 (2000).

    Article  CAS  Google Scholar 

  22. Y. Li, Y. Bando and D. Goldberg: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 (2003).

    Article  CAS  Google Scholar 

  23. B. Mayers and Y. Xia: Formation of tellurium nanotubes through concentration depletion at the surface of seeds. Adv. Mater. 14, 279 (2002).

    Article  CAS  Google Scholar 

  24. J.L. Solis, A. Hoel, L.B. Kish, S. Sauko, V. Lantto and C.G. Granqvist: Gas sensing properties of nanocrystalline WO3 films made by advanced reactive gas deposition. J. Am. Ceram. Soc. 84, 1504 (2001).

    Article  CAS  Google Scholar 

  25. J.S. Suehle, R.E. Cavicchi, M. Gaitan and S. Semancik: Tin oxide gas sensor fabricated using CMOS microhotplates and in-situ processing. IEEE Electron Device Lett 14, 118 (1993).

    Article  CAS  Google Scholar 

  26. R.E. Cavicchi, S. Semancik, F. DiMeo Jr. and C.J. Taylor: Use of microhotplates in the controlled growth and characterization of metal oxides for chemical sensing. J. Electroceram 9, 155 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Zachariah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthangal, P.M., Cavicchi, R.E., Montgomery, C.B. et al. Restructuring tungsten thin films into nanowires and hollow square cross-section microducts. Journal of Materials Research 20, 2889–2894 (2005). https://doi.org/10.1557/JMR.2005.0373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0373

Navigation