Skip to main content
Log in

Aluminum nitride tunnel barrier formation with low-energy nitrogen ion beams

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the use of low-energy nitrogen ion beams to form ultra-thin (<2 nm) layers of AlNx to act as tunnel barriers in Nb/Al–AlNx/Nb Josephson junctions. We fabricated reproducible, high-quality devices with independent control of the ion energy and dose, enabling exploration of a wide parameter space. Critical current density Jc ranged from 550 to 9400 A/cm2 with subgap-to-normal resistance ratios from 50 to 12.6. The spatial variation of ion-current density was roughly correlated with Jc over a large-area on a Si substrate. The junctions were stable on annealing up to temperatures of at least 200 °C. This technique could be applied to form other metal nitrides at room temperature for device applications where a high degree of control is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.Y. Yim, E.S. Jofk, P.Z. Jnzucch, J.P. Inkov, M. Ettember and S.G. Llber: Epitaxially grown AlN and its optical bandgap. J. Appl. Phys. 44, 292 (1973).

    Article  CAS  Google Scholar 

  2. J. Kawamur, D. Mille, J. Che, J. Zmuidzina, B. Bumbl, H.L. GDu and J. Ster: Very higher-current density Nb/AlN.Nb tunnel junctions for low-noise submillimeter mixers. Appl. Phys. Lett. 76, 2119 (2000).

    Article  Google Scholar 

  3. A.K. Bu, B. Bumbl, K.L. A, H.L. GDu, F. Ric and J. Zmuidzina: Fabrication of wide-IF Nb/Al–AlNx/Nb 200–300 GHz SIS mixers formed on SOI. J. Vac. Sci. Technol. B 22, 2417 (2004).

    Article  Google Scholar 

  4. P.D. Nitrie, I.L. Lpitskay, L.F. Vlippenk, A.E. Bmako, S.S. Vito, G.P. Vokopenk, S.K. Avtonyu and V.K. Pshelet: High quality Nb-based tunnel junctions for high frequency and digital applications. IEEE Trans. Appl. Supercond. 13, 107 (2002).

    Google Scholar 

  5. Z. Wan, A. Kawakam, Y. Uzaw and B. Komiyam: NbN/AlN/NbN tunnel junctions fabricated at ambient substrate temperature. IEEE Trans. Appl. Supercond. 5, 2322 (1995).

    Article  Google Scholar 

  6. T. Shiot, T. Imamur and S. Hasu: Nb Josephson junction with an AlNx barrier made by plasma nitridation. Appl. Phys. Lett. 61, 1228 (1992).

    Article  Google Scholar 

  7. A.K. Weinsasse, W.M. Hlliso and R.M. Elle: Nb/AlN/Nb Josephson junctions with high critical current density. IEEE Trans. Appl. Supercond. 5, 2318 (1995).

    Article  Google Scholar 

  8. B. Bumbl, H.L. GDu, J.S. Aer and K.M. Ggeria: Fabrication of Nb/AlNx/NbTiN junctions for SIS mixer applications. IEEE Trans. Appl. Supercond. 11, 76 (2001).

    Article  Google Scholar 

  9. N.I. Nsa, M. Krou, T. Zijlstr, A.E. Bmako, B.J. Dckso, M. Zuidda, F.M. Eije and T.K. Mapwij: Analysis of the fabrication process of Nb/Al–AlNx/Nb tunnel junctions with low RnA values for SIS mixers. IEEE Trans. Appl. Supercond. 13, 127 (2003).

    Article  Google Scholar 

  10. K.P. Hr, B.K. C and H. Kan: Silicon nitride formation by low energy N+ and N2+ ion beams. J. Chem. Phys. 97, 2742 (1992).

    Article  Google Scholar 

  11. H.H. Dgstru in Electron and Ion Spectroscopy of Solids, edited by L. Fierman, J. Venni, and W. Dekeyse (Plenum, New York, 1978), p. 273.

  12. N. Shami, D.B. Aldwi, T. Dark and J.R. Wbalai: Reactions of homonuclear diatomic ions with metal surfaces. II. Nitridation of Al, Cu, Mo, and Ni by N2+ beams in the low kinetic energy-near threshold region. J. Chem. Phys. 76, 6417 (1982).

    Article  Google Scholar 

  13. J. Ster, B. Bumbl, H.L. GDu, J.K. Wo and J. Zmuidzina Fabrication and dc characterization of mixers for use between 600 and 1200 GHz, in Proc. of the Ninth Intl. Symp. on Space THz Tech., Pasadena, CA, March 17–19, 305, 1998.

  14. W. Kleinsasse: Influence of beam energy, flux and composition on junction parameters in ion beam tunnel barrier processing. IEEE Trans. Mag. 21, 130 (1985).

    Article  Google Scholar 

  15. A.K. Weinsasse and R.B. Ahrma: High quality submicron niobium tunnel junctions with reactive ion-beam oxidation. Appl. Phys. Lett. 37, 841 (1980).

    Article  Google Scholar 

  16. M. Petravi and P.N.D.K. epanra: Electrical transients in the ion-beam-induced nitridation of silicon. Appl. Phys. Lett. 78, 3445 (2001).

    Article  Google Scholar 

  17. J.G. Heine: Josephson tunneling barriers by rf sputter etching in an oxygen plasma. J. Appl. Phys. 42, 5151 (1971).

    Article  Google Scholar 

  18. A copy can be obtained at http://www.srim.org/.

  19. G. Carte and D.A. Gmou: The interaction of low energy ion beams with surfaces. Thin Solid Films 80, 13 (1981).

    Article  Google Scholar 

  20. L.D. ALouis and N. Winogra: Adsorption and desorption of NO from RH(111) and RH(331) surfaces. Surf. Sci. 159, 199 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama B. Kaul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, A.B., Kleinsasser, A.W., Bumble, B. et al. Aluminum nitride tunnel barrier formation with low-energy nitrogen ion beams. Journal of Materials Research 20, 3047–3053 (2005). https://doi.org/10.1557/JMR.2005.0369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0369

Navigation