Skip to main content
Log in

Sodium ion conduction in plastic phases: Dynamic coupling of cations and anions in the picosecond range

  • Outstanding Meeting Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Results of simple computer simulations and model calculations for ion conducting rotor phases are compared to quasi-elastic neutron scattering data from solid solutions of sodium orthophosphate and sodium sulphate, xNa2SO4·(1 − x)Na3PO4. These materials are not only sodium fast-ion conductors in their high-temperature cubic phases but also show considerable dynamic reorientation disorder of their tetrahedral anions. At an elastic energy resolution of about 100 _eV, neutron spectrometry monitored oxygen scattering due to anion reorientation which occurs on the picosecond time scale. This thermally activated process exhibits activation energies between 0.184 eV (x _ 0.0) and 0.052 eV (x _ 0.5). Analysis of the quasielastic intensities as a function of scattering vector Q gives clear evidence of the involvement of cations in the anion reorientation. Increasing the elastic resolution to about 1 _eV full width at half-measure (FWHM) (thereby shifting the dynamic window to the nanosecond scale) allowed examination of sodium diffusion in xNa2SO4·(1 − x)Na3PO4. This process consists predominantly of thermally activated jumps between tetrahedrally coordinated sites, the activation energies ranging from 0.64 eV for x = 0.0 to 0.30 eV for x = 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lundén: Enhancement of cation mobility in some sulphate phases due to a paddle-wheel mechanism. Solid State Ionics 28–30, 163 (1988).

    Article  Google Scholar 

  2. A. Lundén: Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases. Solid State Commun. 65, 1237 (1988).

    Article  Google Scholar 

  3. A. Lundén and M.A.K.L. Dissanayake: On the ionic conductivity and phase transitions in the Li2SO4-Li2WO4 system and their relation to ion transport mechanism. J. Solid State Chem. 90, 179 (1991).

    Article  Google Scholar 

  4. A. Lundén: Cation transport mechanisms in high-temperature rotor phases of sulfates. J. Solid State Chem. 107, 296 (1993).

    Article  Google Scholar 

  5. A. Lundén: Paddle-wheel versus percolation model, revisited. Solid State Ionics 68, 77 (1994).

    Article  Google Scholar 

  6. E.A. Secco: Fast cation conductivity by percolation in alkali sulfate compositions. Solid State Ionics 28–30, 168 (1988).

    Article  Google Scholar 

  7. E.A. Secco: Ion transport in sulfates: percolation mechanism versus paddle-wheel mechanism. Solid State Commun. 66, 921 (1988).

    Article  CAS  Google Scholar 

  8. E.A. Secco: Comments on electrical conductivity and phase diagram of the system Li2SO4–Li3PO4. Solid State Ionics 45, 335 (1991).

    Article  CAS  Google Scholar 

  9. E.A. Secco: Paddle wheel mechanism in lithium sulfates: Arguments in defense and evidence against. J. Solid State Chem. 96, 366 (1992).

    Article  CAS  Google Scholar 

  10. E.A. Secco: Paddle-wheel versus percolation model. Solid State Ionics 60, 233 (1993).

    Article  CAS  Google Scholar 

  11. M. Jansen: Volume effect or paddle-wheel mechanism—Fast alkalimetal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. Int. Ed. Engl. 30, 1547 (1991).

    Article  Google Scholar 

  12. M. Ferrario, M.L. Klein, and I.R. McDonald: Cation transport in lithium sulphate based crystals. Mol. Phys. 86, 923 (1995).

    Article  CAS  Google Scholar 

  13. D.M. Wiench and M. Jansen: About Na3PO4: Experiments on the synthesis of pure samples, crystal structure of the hightemperature modification. Z. Anorg. Allg. Chem. 461, 101 (1980).

    Article  CAS  Google Scholar 

  14. D.M. Wiench and M. Jansen: Substitution of Na2SO4 into the high-temperature modification of Na3PO4. Z. Anorg. Allg. Chem. 486, 57 (1982).

    Article  CAS  Google Scholar 

  15. J.T.S. Irvine and A.R. West: Sodium ion-conducting solid electrolytes in the system Na3PO4–Na2SO4. J. Solid State Chem. 69, 126 (1987).

    Article  CAS  Google Scholar 

  16. R. Harrison, A. Putnis, and W. Kockelmann: Phase transition behaviour and equilibrium phase relations in the fast-ion conductor system Na3PO4–Na2SO4. Phys. Chem. Chem. Phys. 4, 3252 (2002).

    Article  CAS  Google Scholar 

  17. H. Hruschka, E. Lissel, and M. Jansen: Na-ion conduction in the solid solutions of Na3PO4/Na2SO4 and Na3A1F6/Na2SO4. Solid State Ionics 28–30, 159 (1988).

    Article  Google Scholar 

  18. J.T.S. Irvine and A.R. West: Solid electrolytes based on Na3PO4 doped with S, Se, Mo. W. Mater. Res. Bull. 22, (8) 1047 (1987).

    Article  CAS  Google Scholar 

  19. J.T.S. Irvine and A.R. West: Sodium phosphate-based solid electrolytes. Solid State Ionics 28–30, 214 (1988).

    Article  Google Scholar 

  20. J.T.S. Irvine and A.R. West: Solid electrolytes based on Na3PO4:M4+ (M = Zr, Hf, Ti, Sn, Ce, Th). J. Solid State Chem. 74, 385 (1988).

    Article  CAS  Google Scholar 

  21. J.T.S. Irvine and A.R. West: Solid electrolytes based on Na3PO4:M2+ (M = Mg, Zn, Ca, Sr). Solid State Ionics 37, 8 (1989).

    Article  Google Scholar 

  22. R.E. Lechner, R. Melzer, and J. Fitter: First QINS results from the TOF-spectrometer NEAT. Physica B 226, 86 (1996).

    Article  CAS  Google Scholar 

  23. B. Frick, A. Magerl, Y. Blanc, and R. Rebesco: The new backscattering spectrometer IN16 at the ILL. Physica B 234–236, 1177 (1997).

    Article  Google Scholar 

  24. D. Wilmer, K. Funke, M. Witschas, R.D. Banhatti, M. Jansen, G. Korus, J. Fitter, and R.E. Lechner: Anion reorientation in an ion conducting plastic crystal—Coherent quasielastic neutron scattering from sodium ortho-phosphate. Physica B 266, 60 (1999).

    Article  CAS  Google Scholar 

  25. D. Wilmer, H. Feldmann, and R.E. Lechner: Ion dynamics in solid solutions of sodium phosphate and sodium sulfate. Phys. Chem. Chem. Phys. 4, 3260 (2002).

    Article  CAS  Google Scholar 

  26. M. Witschas, H. Eckert, D. Wilmer, R.D. Banhatti, K. Funke, J. Fitter, R.E. Lechner, G. Korus, and M. Jansen: Anion rotation and cation transport in the rotor phase γ-sodium orthophosphate: Paddle-wheel mechanism redefined in view of new experimental results. Z. Phys. Chemie 214, 643 (2000).

    Article  CAS  Google Scholar 

  27. C.T. Chudley and R.J. Elliott: Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77, 353 (1961).

    Article  Google Scholar 

  28. D. Wilmer and J. Combet: Sodium ion diffusion in solid solutions of sodium orthophosphate and sodium sulfate. Chem. Phys. 292, 143 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wilmer.

Additional information

This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium K Proceedings, Vol. 835.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmer, D., Feldmann, H., Lechner, R.E. et al. Sodium ion conduction in plastic phases: Dynamic coupling of cations and anions in the picosecond range. Journal of Materials Research 20, 1973–1978 (2005). https://doi.org/10.1557/JMR.2005.0277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0277

Navigation