Skip to main content
Log in

Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new patterning technique for the deposition of sol-gels and chemical solution precursors was developed to address some of the limitations of soft lithography approaches. When using micromolding in capillaries to pattern precursors that exhibit large amounts of shrinkage during drying, topographical distortions develop. In place of patterning the elastomeric mold, the network of capillary channels was patterned directly into the substrate surface and an elastomer membrane is used to complete the channels. When the wetting properties of the substrate surfaces were carefully controlled using self-assembled monolayers (SAMs), lead zirconate titanate thin films with nearly rectangular cross-sections were successfully patterned. This technique, called microchannel molding (μCM), also provided a method for aligning multiple layers such as bottom electrodes for device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xia and G.M. Whitesides: Soft Lithography. Ann. Rev. Mater. Sci. 28, 153 (1998).

    Article  CAS  Google Scholar 

  2. X-M. Zhao, Y. Xia, and G.M. Whitesides: Fabrication of threedimensional micro-structures: Microtransfer molding. Adv. Mater. 8, 837 (1996).

    Article  CAS  Google Scholar 

  3. J.H. Kim, F.F. Lange, and C-I. Cheon: Epitaxial growth of patterned SrBi2Ta2O9 lines by channel stamping. J. Mater. Res. 14, 1194 (1999).

    Article  CAS  Google Scholar 

  4. P.M. Moran and F.F. Lange: Microscale lithography via channel stamping: Relationships between capillarity, channel filling, and debonding. Appl. Phys. Lett. 74, 1332 (1999).

    Article  CAS  Google Scholar 

  5. E. Kim, Y. Xia, and G.M. Whitesides: Polymer microstructures formed by molding in capillaries. Nature 376, 581 (1995).

    Article  CAS  Google Scholar 

  6. Y. Xia, E. Kim, and G.M. Whitesides: Micromolding of polymers in capillaries: Applications in microfabrication. Chem. Mater. 8, 1588 (1996).

    Article  Google Scholar 

  7. E. Kim, Y. Xia, and G.M. Whitesides: Micromolding in capillaries: Applications in materials science. J. Am. Chem. Soc. 118, 5722 (1996).

    Article  CAS  Google Scholar 

  8. M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, and I.A. Aksay: Microscopic patterning of orientated mesoscopic silica through guided growth. Nature 390, 674 (1997).

    Article  CAS  Google Scholar 

  9. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky: Hierarchically ordered oxides. Science 282, 2244 (1998).

    Article  CAS  Google Scholar 

  10. W.S. Beh, Y. Xia, and D. Qin: Formation of patterned microstructures of polycrystalline ceramics from precursor polymers using micromolding in capillaries. J. Mater. Res. 14, 3995 (1999).

    Article  CAS  Google Scholar 

  11. S. Seraji, Y. Wu, N.E. Jewell-Larson, M.J. Forbess, S.J. Limmer, T.P. Chou, and G. Cao: Patterned microstructure of sol-gel derived complex oxides using soft lithography. Adv. Mater. 12, 1421 (2000).

    Article  CAS  Google Scholar 

  12. J.S. Vartuli, M. Özenbas¸, C-M. Chun, M. Trau, and I.A. Aksay: Micropatterned lead zirconium titanate thin films. J. Mater. Res. 18, 1259 (2003).

    Article  CAS  Google Scholar 

  13. C.R. Martin and I.A. Aksay: Topographical evolution of lead zirconate titanate (PZT) thin films patterned by micromolding in capillaries. J. Phys. Chem. B 107, 4261 (2003).

    Article  CAS  Google Scholar 

  14. M. Heule and L.J. Gauckler: Gas sensors fabricated from ceramic suspensions by micromolding in capillaries. Adv. Mater. 13, 1790 (2001).

    Article  CAS  Google Scholar 

  15. C. Marzolin, S.P. Smith, M. Prentiss, and G.M. Whitesides: Fabrication of glass microstructures by micro-molding of sol-gel precursors. Adv. Mater. 10, 571 (1998).

    Article  CAS  Google Scholar 

  16. A. Matsuda, Y. Matsuno, M. Tatsumisago, and T. Minami: Fine patterning and characterization of gel firms derived from methyltriethoxysilane and tetraethoxysilane. J. Am. Ceram. Soc. 81, 2849 (1998).

    Article  CAS  Google Scholar 

  17. O.J.A. Schueller, G.M. Whitesides, J.A. Rogers, M. Meier, and A. Dodabalapur: Fabrication of photonic crystal lasers by nanomolding of sol-gel glasses. Appl. Opt. 38, 5799 (1999).

    Article  CAS  Google Scholar 

  18. C.A. Bulthaup, E.J. Wilhelm, B.N. Hubert, B.A. Ridley, and J.M. Jacobson: All-additive fabrication of inorganic logic elements by liquid embossing. Appl. Phys. Lett. 79, 1525 (2001).

    Article  CAS  Google Scholar 

  19. A. Kumar and G.M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett. 63, 2002 (1993).

    Article  CAS  Google Scholar 

  20. A. Kumar, H.A. Biebuyck, and G.M. Whitesides: Patterning selfassembled monolayers—Applications in materials science. Langmuir 10, 1498 (1994).

    Article  CAS  Google Scholar 

  21. N.L. Jeon, P.G. Clem, R.G. Nuzzo, and D.A. Payne: Patterning of dielectric oxide thin-layers by microcontact printing of selfassembled monolayers. J. Mater. Res. 10, 2996 (1995).

    Article  CAS  Google Scholar 

  22. N.L. Jeon, P.G. Clem, D.A. Payne, and R.G. Nuzzo: A monolayerbased lift-off process for patterning chemical vapor deposition copper thin films. Langmuir 12, 5350 (1996).

    Article  CAS  Google Scholar 

  23. P.G. Clem, N-L. Jeon, R.G. Nuzzo, and D.A. Payne: Monolayermediated deposition of tantalum(V) oxide thin film structures from solution precursors. J. Am. Ceram. Soc. 80, 2821 (1997).

    Article  CAS  Google Scholar 

  24. N.L. Jeon, P. Clem, D.Y. Jung, W. Lin, G.S. Girolami, D.A. Payne, and R.G. Nuzzo: Additive fabrication of integrated ferroelectric thin-film capacitors using self-assembled organic thin-film templates. Adv. Mater. 9, 891 (1997).

    Article  CAS  Google Scholar 

  25. D.A. Payne and P.G. Clem: Monolayer-mediated patterning of integrated electroceramics. J. Electroceram. 3, 163 (1999).

    Article  CAS  Google Scholar 

  26. Y.K. Hwang, S.Y. Woo, J.H. Lee, D-Y. Jung, and Y-U. Kwon: Micropatterned CdS thin films by selective solution deposition using microcontact printing techniques. Chem. Mater. 12, 2059 (2000).

    Article  CAS  Google Scholar 

  27. M. Bartz, A. Terfort, W. Knoll, and W. Tremel: Stamping of monomeric SAMs as a route to structured crystallization templates: Patterned titania films. Chem. Eur. J. 6, 4149 (2000).

    Article  CAS  Google Scholar 

  28. H. Shin, J.U. Jeon, Y.E. Pak, H. Im, and E.S. Kim: Formation and characterization of crystalline iron oxide films on self-assembled organic monolayers and their in situ patterning. J. Mater. Res. 16, 564 (2001).

    Article  CAS  Google Scholar 

  29. C.R. Martin and I.A. Aksay: Submicrometer-scale patterning of ceramic thin films. J. Electroceramics 12, 53 (2004).

    Article  CAS  Google Scholar 

  30. C.R. Aksay: Low-cost patterning of ceramic thin films, in Electroceramic-Based MEMS: Fabrication-Technology and Applications, edited by N. Setter (Springer Science+Business Media, New York, 2005), p. 387.

    Google Scholar 

  31. A. Folch and M.A. Schmidt: Wafer-level in-registry microstamping. J. Microelectromech. Syst. 8, 85 (1999).

    Article  Google Scholar 

  32. G. Yi, Z. Wu, and M. Sayer: Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties. J. Appl. Phys. 64, 2717 (1988).

    Article  CAS  Google Scholar 

  33. H.J. Shin, Y.H. Wang, U. Sampathkumaran, M.R. DeGuire, A.H. Heuer, and C.N. Sukenik: Pyrolysis of self-assembled organic monolayers on oxide substrates. J. Mater. Res. 14, 2116 (1999).

    Article  CAS  Google Scholar 

  34. C.S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh: Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. 75, 409 (1999).

    Article  CAS  Google Scholar 

  35. Z. Huang, Q. Zhang, and R.W. Whatmore: Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method. J. Appl. Phys. 85, 7355 (1999).

    Article  CAS  Google Scholar 

  36. Z. Huang, Q. Zhang, and R.W. Whatmore: Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films. J. Appl. Phys. 86, 1662 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilhan A. Aksay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C.R., Aksay, I.A. Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning. Journal of Materials Research 20, 1995–2003 (2005). https://doi.org/10.1557/JMR.2005.0251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0251

Navigation