Skip to main content
Log in

Molecular-dynamics study of interfacial diffusion between high-permittivity gate dielectrics and germanium substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The stability of interfaces with germanium, which has recently been discussed as a replacement for silicon in ultra-large-scale integrated circuits (ULSIs), was studied. Interfacial oxygen diffusion from high-permittivity gate dielectrics (ZrO2 and HfO2) into germanium substrates must be suppressed to prevent the formation of interfacial layers between the gate dielectrics and the germanium substrates. Oxygen diffusion was simulated through a molecular-dynamics technique that takes into account many-body interactions and charge transfer between different elements. The simulation results show that the addition of yttrium is effective in suppressing interfacial oxygen diffusion at the ZrO2/germanium interfaces. On the other hand, the addition of yttrium is not effective in suppressing interfacial oxygen diffusion at the HfO2/germanium interfaces. The results also show that the diffusion at the ZrO2/Ge(111) and HfO2/Ge(111) interfaces is much more suppressed than the diffusion at the ZrO2/Ge(001) and HfO2/Ge(001) interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chi, C.O. Chui, K.C. Sawaswat, B.B. Triplett, and P.C. Mclntyre: Zirconia grown by ultraviolet ozone oxidation on germanium (100) substrates. J. Appl. Phys. 96, 813 (2004).

    Article  CAS  Google Scholar 

  2. H. Kim, C.O. Chui, K.C. Sawaswat, and P.C. Mclntyre: Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy. Appl. Phys. Lett. 83, 2647 (2003).

    Article  CAS  Google Scholar 

  3. C.O. Chui, H. Kim, D. Chi, B.B. Triplett, P.C. Mclntyre, and K.C. Sawaswat: A sub-400°C germanium MOSFET technology with high-k dielectric and metal gate, in 2003 IEEE International Electronics Devices Meeting, edited by L. Lunardi (Washington, DC, 2002) p. 437.

    Google Scholar 

  4. H. Ota, S. Migita, Y. Morita, and S. Sakai: HfO2 MIS structures with a silicon nitride barrier layer. Extended Abstracts of International Workshop on Gate Insulator 2001, 188 (2001).

    Google Scholar 

  5. K-J. Choi, W-C. Shin, and S-G. Yoon: Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2. J. Mater. Res. 18, 60 (2003).

    Article  CAS  Google Scholar 

  6. R.M. Wallace, and G. Wilk: Alternative gate dielectrics for microelectronics. MRS Bull. 27(3), 186 (2002).

    Article  Google Scholar 

  7. A.I. Kingon, J-P. Maria, D. Wicaksana, and C. Hoffman: Compatibility of candidate high permittivity gate oxides with front and backend processing conditions. Extended Abstracts of International Workshop on Gate Insulator 2001, 36 (2001).

    Google Scholar 

  8. Y. Morisaki, Y. Sugita, K. Irino, and T. Aoyama: Effects of interface oxide layer on HfO2 gate dielectrics. Extended Abstracts of International Workshop on Gate Insulator 2001, 184 (2001).

    Google Scholar 

  9. S.J. Lee, C.H. Lee, Y.H. Kim, H.F. Luan, W.P. Bai, T.S. Jeon, and D.L. Kwong: Dual-poly CVD HfO2 gate stack for sub-100 nm CMOS technology. Extended Abstracts of International Workshop on Gate Insulator 2001, 80 (2001).

    Google Scholar 

  10. M. Sohgawa, S. Kitai, H. Kanda, T. Kanashima, A. Fujimoto, and M. Okuyama: Preparation and characterization of ZrO2/Si structure. Extended Abstracts of International Workshop on Gate Insulator 2001, 170 (2001).

    Google Scholar 

  11. T. Iwasaki: Molecular-dynamics analysis of interfacial diffusion between high-permittivity gate dielectrics and silicon substrates. J. Mater. Res. 19, 1197 (2004).

    Article  CAS  Google Scholar 

  12. A. Yasukawa: Using an extended Tersoff interatomic potential to analyze the static-fatigue strength of SiO2 under atmospheric influence. JSME Int. J. Ser. A 39, 313 (1996).

    CAS  Google Scholar 

  13. S.J. Wang and C.K. Ong: Epitaxial Y-stabilized ZrO films on silicon: Dynamic growth process and interface structure. Appl. Phys. Lett. 80, 2541 (2002).

    Article  CAS  Google Scholar 

  14. W. Heermann: Computer Simulation Methods, 2nd ed. (Springer-Verlag, Berlin, Germany, 1989), p. 13.

    Google Scholar 

  15. L.V. Woodcock: Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10, 257 (1971).

    Article  CAS  Google Scholar 

  16. T. Iwasaki: Molecular dynamics study of diffusion and atomic configuration in layered structures for Al circuit interconnects. Comput. Mech. 24, 148 (1999).

    Article  Google Scholar 

  17. T. Iwasaki: Molecular dynamics study of adhesion strength and diffusion at interfaces between interconnect materials and underlay materials. Comput. Mech. 25, 78 (2000).

    Article  Google Scholar 

  18. T. Iwasaki, and H. Miura: Molecular dynamics analysis of adhesion strength of interfaces between thin films. J. Mater. Res. 16, 1789 (2001).

    Article  CAS  Google Scholar 

  19. J. Tersoff: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B39, 5566 (1989).

    Article  Google Scholar 

  20. F. Ercolessi and J.B. Adams: Interatomic potentials from firstprinciples calculations: The force-matching method. Europhys. Lett. 26, 583 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Iwasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, T. Molecular-dynamics study of interfacial diffusion between high-permittivity gate dielectrics and germanium substrates. Journal of Materials Research 20, 1300–1307 (2005). https://doi.org/10.1557/JMR.2005.0158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0158

Navigation