Skip to main content
Log in

Effect of substrate surface orientation on the wettability and adhesion of α–Al2O3 single crystals by molten Cu

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Wetting of α–Al2O3 single crystals with different crystallographic orientations, R(011¯2), A(112¯0), and C(0001), by molten Cu at 1423–1673 K was studied using an improved sessile drop method mainly in a reducing Ar–3%H2 atmosphere to determine the effect of the alumina surface orientation on the wettability and adhesion in this system. The contact angles were generally in the range of 110–117°, and the work of adhesion was between 0.7 and 0.8 J m−2, without a significant dependence on the alumina surface orientation. This result was explained by the possibly close bond strengths of Cu–O at the oxygen-terminated Cu/[R(011¯2)] and Cu/[A(112¯0)] α-alumina interfaces and Cu–Al at the Al-terminated (or Al-rich) Cu/[C(0001)] α-alumina interface under high-temperature and low oxygen partial pressure conditions. Additionally, the effects of alumina surface dissolution in the region around the triple junction and H2 in the atmosphere were examined. Some reasons for the controversy on the bonding nature at the Cu/α–Al2O3 interfaces, i.e., Cu–O or Cu–Al on earth, present in the literature were also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Schwartz: Microelectronics packaging II. Am. Ceram. Soc. Bull. 63, 577 (1984).

    CAS  Google Scholar 

  2. M.C. Wu and D.W. Goodman: Particulate Cu on ordered Al2O3: Reactions with nitric oxide and carbon monoxide. J. Phys. Chem. 98, 9874 (1994).

    Article  CAS  Google Scholar 

  3. D.W. Goodman: Model studies in catalysis using surface science probes. Chem. Rev. 95, 523 (1995).

    Article  CAS  Google Scholar 

  4. B.C. Allen and W.D. Kingery: Surface tension and contact angles in some liquid metal-solid ceramic systems at elevated temperatures. Trans. Metall. Soc. AIME 215, 30 (1959).

    CAS  Google Scholar 

  5. A.C.D. Chaklader, A.M. Armstrong, and S.K. Misra: Interface reactions between metals and ceramics: IV. Wetting of sapphire by liquid copper-oxygen alloys. J. Am. Ceram. Soc. 51, 630 (1968).

    Article  CAS  Google Scholar 

  6. T.E. O’Brien and A.C.D. Chaklader: Effect of oxygen on the reaction between copper and sapphire. J. Am. Ceram. Soc. 57, 329 (1974).

    Article  Google Scholar 

  7. S.P. Mehrotra and A.C.D. Chaklader: Interfacial phenomena between molten metals and sapphire substrate. Metall. Trans. B 16B, 567 (1985).

    Article  CAS  Google Scholar 

  8. P.D. Ownby and J. Liu: Surface energy of liquid copper and single-crystal sapphire and the wetting behavior of copper on sapphire. J. Adhes. Sci. Technol. 2, 255 (1988).

    Article  CAS  Google Scholar 

  9. K. Nogi, K. Oishi, and K. Ogino: Wettability of solid oxides by liquid pure metals. Mater. Trans. JIM 30, 137 (1989).

    Article  Google Scholar 

  10. H. Matsumoto, M.R. Locatelli, K. Nakashima, A.M. Glaeser, and K. Mori: Wettability of Al2O3 by liquid Cu as influenced by additives and partial transient liquid-phase bonding of Al2O3. Mater. Trans. JIM 36, 555 (1995).

    Article  CAS  Google Scholar 

  11. A. Meier, M.D. Baldwin, P.R. Chidambaram, and G.R. Edwards: The effect of large oxygen additions on the wettability and adhesion of copper-oxygen alloys on polycrystalline alumina. Mater. Sci. Eng. A 196, 111 (1995).

    Article  Google Scholar 

  12. P.D. Chidambaram, A. Meier, and G.R. Edwards: The nature of interfacial phenomena at copper-titanium/alumina and copperoxygen/alumina interfaces. Mater. Sci. Eng. A 206, 249 (1996).

    Article  Google Scholar 

  13. V. Ghetta, J. Fouletier, and D. Chatain: Oxygen adsorption isotherms at the surfaces of liquid Cu and Au-Cu alloys and their interfaces with Al2O3 detected by wetting experiments. Acta Mater. 44, 1927 (1996).

    Article  CAS  Google Scholar 

  14. D. Chatain, V. Ghetta, and J. Fouletier: Metal/oxide interfaces: Chemistry, wetting, adhesion, and oxygen activity, in Proceedings of Ceramic Microstructures’ 96: Control at the Atomic Level, edited by A.P. Tomsia and A.M. Glaeser (Plenum, New York, 1998), p. 349.

    Chapter  Google Scholar 

  15. E. Saiz, A.P. Tomsia, and R.M. Cannon: Wetting and work of adhesion in metal/oxide system, in Proceedings of Ceramic Microstructures’ 96: Control at the Atomic Level, edited by A.P. Tomsia and A.M. Glaeser (Plenum, New York, 1998), p. 65.

    Chapter  Google Scholar 

  16. E. Saiz, A.P. Tomsia, and R.M. Cannon: Ridging effects on wetting and spreading of liquids on solids. Acta Mater. 46, 2349 (1998).

    Article  CAS  Google Scholar 

  17. M. Diemer, A. Neubrand, K.P. Trumble, and J. Rödel: Influence of oxygen partial pressure and oxygen content on the wettability in the copper-oxygen-alumina system. J. Am. Ceram. Soc. 82, 2825 (1999).

    Article  CAS  Google Scholar 

  18. P. Vikner: DEA report, LTPCM, INP Grenoble, France, 1993. Reported in N. Eustathopoulos, M.G. Nicholas and B. Drevet, Wettability at High Temperatures (Elsevier Science, Oxford, U.K., 1999), pp. 205–207.

    Google Scholar 

  19. U. Alber, H. Müllejans, and M. Rühle: Wetting of copper on α–Al2O3 surfaces depending on the orientation and oxygen partial pressure. Micron. 30, 101 (1999).

    Article  CAS  Google Scholar 

  20. P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: The influence of surface structure on wetting of α–Al2O3 by Al in a reduced atmosphere. Acta Mater. 51, 4897 (2003).

    Article  CAS  Google Scholar 

  21. P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: Surface orientation and wetting phenomena in Si/α-alumina system at 1723 K. J. Am. Ceram. Soc. (in press).

  22. H. Fujii, H. Nakae, and K. Okada: Interfacial reaction wetting in the boron nitride/molten aluminum system. Acta Metall. Mater. 41, 2963 (1993).

    Article  CAS  Google Scholar 

  23. P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: Critical factors affecting the wettability of α–Al2O3 by molten aluminum. J. Am. Ceram. Soc. 87(11), 2151 (2004).

    Article  Google Scholar 

  24. B. Gallois and C.H.P. Lupis: Effect of oxygen on the surface tension of liquid copper. Metall. Trans. B. 12B, 549 (1981).

    Article  CAS  Google Scholar 

  25. Z. Morita and A. Kasama: Surface tension of liquid copper in dilute oxygen concentrations. J. Jpn. Inst. Met. 40, 787 (1976).

    Article  CAS  Google Scholar 

  26. A. Kasama, T. Iida, and Z. Morita: Temperature dependence of surface tension of liquid pure metals. J. Jpn. Inst. Met. 40, 1030 (1976).

    Article  CAS  Google Scholar 

  27. A. Portevin and P. Bastien: C. R. Acad. Sci. 202, 1072 (1937).

    Google Scholar 

  28. P.P. Budnikov and F. Xaritonov: Izv. Akad. Nauk SSSR, Neorg. Mat. 3(3), 496 (1967). Reported in S.H. Overbury, P.A. Bertrand, and G.A. Somorjai: The surface composition of binary systems: Prediction of surface phase diagrams of solid solutions. Chem. Rev. 75(5), 547 (1975).

    CAS  Google Scholar 

  29. W.D. Kingery: Metal-ceramic interactions: IV. Absolute measurement of metal-ceramic interfacial energy and the interfacial adsorption of silicon from iron-silicon alloys. J. Am. Ceram. Soc. 37(2), 42 (1954).

    Article  CAS  Google Scholar 

  30. S.K. Rhee: Critical surface energies of Al2O3 and graphite. J. Am. Ceram. Soc. 55(6), 300 (1972).

    Article  CAS  Google Scholar 

  31. P. Nikolopoulos: Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3–Sn, Al2O3–Co systems. J. Mater. Sci. 20, 3993 (1985).

    Article  CAS  Google Scholar 

  32. G. Levi and W.D. Kaplan: Aluminum-alumina interface morphology and thermodynamic from dewetting experiments. Acta Mater. 51, 2793 (2003).

    Article  CAS  Google Scholar 

  33. J-H. Choi, D-Y. Kim, B.J. Hockey, S.M. Wiederhorn, C.A. Handwerker, J.E. Blendell, W.C. Carter, and A.R. Roosen: Equilibrium shape of internal cavities in sapphire. J. Am. Ceram. Soc. 80(1), 62 (1997).

    Article  CAS  Google Scholar 

  34. M. Kitayama and A.M. Glaeser: The Wulff shape of alumina: III. Undoped alumina. J. Am. Ceram. Soc. 85(3), 611 (2002).

    Article  CAS  Google Scholar 

  35. P.W. Tasker: Surface of magnesia and alumina, in Advance in Ceramics: Structure and Properties of MgO and Al2O3Ceramics, edited by W.D. Kingery (The American Ceramic Society, Columbus, OH, 1984), p. 176.

    Google Scholar 

  36. W.C. Mackrodt, R.J. Davey, and S.N. Black: The morphology of α–Al2O3 and α–Fe2O3: The importance of surface relaxation. J. Cryst. Growth 80, 441 (1987).

    Article  CAS  Google Scholar 

  37. S. Blonski and S.H. Garofalini: Molecular dynamics simulations of α-alumina and γ-alumina surfaces. Surf. Sci. 295, 263 (1993).

    Article  CAS  Google Scholar 

  38. I. Manassidis and M.J. Gillan: Structure and energetics of alumina surfaces calculated from first principles. J. Am. Ceram. Soc. 77, 335 (1994).

    Article  CAS  Google Scholar 

  39. D.H. Gay and A.L. Rohl: Marvin: A new computer code for studying surfaces and interfaces and its application to calculating the crystal morphologies of corundum and zircon. J. Chem. Soc., Faraday Trans. 1 91, 925 (1995).

    Article  CAS  Google Scholar 

  40. H. Suzuki, H. Matsubara, J. Kishino, and T. Kondoh: Simulation of surface and grain boundary properties of alumina by molecular dynamics method. J. Ceram. Soc. Jpn. 106, 1215 (1998).

    Article  CAS  Google Scholar 

  41. N.H. de Leeuw and S.C. Parker: Effect of chemisorption and physisorption of water on the surface structure and stability of α- alumina. J. Am. Ceram. Soc. 82, 3209 (1999).

    Article  Google Scholar 

  42. A. Marmier and S.C. Parker: Ab initio morphology and surface thermodynamics of α–Al2O3. Phys. Rev. 69, 115409 (2004).

    Article  CAS  Google Scholar 

  43. C. Scheu, G. Dehm, M. Rühle, and R. Brydson: Electron-energyloss spectroscopy studies of Cu–α–Al2O3 interfaces grown by molecular beam epitaxy. Philos. Mag. A 78, 439 (1998).

    Article  CAS  Google Scholar 

  44. C. Scheu, W. Stein, and M. Rühle: Electron energy-loss near-edge structure studies of a Cu/(112¯0) α–Al2O3 interface. Phys. Status Solidi B 222, 199 (2000).

    Article  CAS  Google Scholar 

  45. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara: Atomic and electronic structure of Cu/α–Al2O3 interfaces by pulsed laser deposition. Sci. Technol. Adv. Mater. 4, 575 (2003).

    Article  CAS  Google Scholar 

  46. C. Scheu: Manipulating bonding at a Cu/(0001)Al2O3 interface by different substrate cleaning processes. Interface Sci. 12, 127 (2004).

    Article  CAS  Google Scholar 

  47. M. Gao, C. Scheu, T. Wagner, W. Kurtz, and M. Rühle: Bonding between Cu and α–Al2O3. Z. Metallkd. 93, 438 (2002).

    Article  CAS  Google Scholar 

  48. R. Di Felice and J.E. Northrup: Theory of the clean and hydrogenated Al2O3 (0001)-(1 × 1) surfaces. Phys. Rev. B 60, 16287 (1999).

    Article  Google Scholar 

  49. X.G. Wang, A. Chaka, and M. Scheffler: Effect of the environment on α–Al2O3 (0001) surface structures. Phys. Rev. Lett. 84, 3650 (2000).

    Article  CAS  Google Scholar 

  50. J. Ahn and J.W. Rabalais: Composition and structure of the Al2O3 (0001)-(1×1) surface. Surf. Sci. 388, 121 (1997).

    Article  CAS  Google Scholar 

  51. M. Backhaus-Ricoult: Gibbs adsorption at β alumina-copper interfaces. J. Eur. Ceram. Soc. 23, 2747 (2003).

    Article  CAS  Google Scholar 

  52. M. Backhaus-Ricoult and M.F. Trichet: Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces. Z. Metallkd. 94, 250 (2003).

    Article  CAS  Google Scholar 

  53. W. Zhang, J.R. Smith, and A.G. Evans: The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater. 50, 3803 (2002).

    Article  CAS  Google Scholar 

  54. G.L. Zhao, J.R. Smith, J. Raynolds, and D.J. Srolovitz: Firstprinciples study of the α–Al2O3(0001)/Cu(111) interface. Interface Sci. 3, 289 (1996).

    Article  CAS  Google Scholar 

  55. I.G. Batyrev and L. Kleinman: In-plane relaxation of Cu(111) and Al(111)/_–Al2O3(0001) interfaces. Phys. Rev. B. 64, 033410 (2001).

    Article  CAS  Google Scholar 

  56. X.G. Wang, J.R. Smith, and M. Scheffler: Adhesion of copper and alumina from first principles. J. Am. Ceram. Soc. 86, 696 (2003).

    Article  CAS  Google Scholar 

  57. N.C. Hernández and J.F. Sanz: First principles study of Cu atoms deposited on the α–Al2O3 surface. J. Phys. Chem. B 106, 11495 (2002).

    Article  CAS  Google Scholar 

  58. Z. Lodziana and J.K. Norskov: Adsorption of Cu and Pd on α–Al2O3(0001) surfacees with different stoichiometries. J. Chem. Phys. 115, 11261 (2001).

    Article  CAS  Google Scholar 

  59. T.M. French and G.A. Somorjai: Composition and surface structure of the (0001) face of α–Al2O3 by low-energy electron diffraction. J. Phys. Chem. 74, 2489 (1970).

    Article  CAS  Google Scholar 

  60. M. Gautier, G. Renaud, L.P. Van, B. Villette, M. Pollak, N. Thromat, F. Jollet, and J-P. Duraud: _–Al2O3 (0001) surfaces: Atomic and electronic structure. J. Am. Ceram. Soc. 77, 323 (1994).

    Article  CAS  Google Scholar 

  61. G. Renaud, B. Villette, I. Vilfan, and A. Bourret: Atomic structure of the α–Al2O3 (0001) (311/2 × 311/2)R ± 9° reconstruction. Phys. Rev. Lett. 73, 1825 (1994).

    Article  CAS  Google Scholar 

  62. J.A. Kerr: Strengths of chemical bonds, in CRC Handbook of Chemistry and Physics, edited by D.R. Lide and H.P.R. Frederikse (76th edition, CRC Press, Inc., Boca Raton, FL, 1995–1996), pp. 9–51.

    Google Scholar 

  63. B. Ealet and E. Gillet: Metal-alumina interface: Influence of the metal electronegativity and of the substrates stoichiometry. Surf. Sci. 367, 221 (1996).

    Article  CAS  Google Scholar 

  64. P. Alemany, R.S. Boorse, J.M. Burlitch, and R. Hoffmann: Metalceramic adhesion: Quantum mechanical modeling of transition metal–Al2O3 interfaces. J. Phys. Chem. 97, 8464 (1993).

    Article  CAS  Google Scholar 

  65. K. Nath and A.B. Anderson: Oxidative bonding of (0001)_–Al2O3 to close-packed surfaces of the first transition-metal series, Sc through Cu. Phys. Rev. B 39, 1013 (1989).

    Article  CAS  Google Scholar 

  66. P.D. TePsesch and A.A. Quong: First-principles calculation of α-alumina (0001) surfaces energies with and without hydrogen. Phys. Status Solidi 217, 377 (2000).

    Article  Google Scholar 

  67. J.A. Kelber, C. Niu, K. Shepherd, D.R. Jennison, and A. Bogicevic: Copper wetting of α–Al2O3(0001): Theory and experiment. Surf. Sci. 446, 76 (2000).

    Article  CAS  Google Scholar 

  68. X.G. Wang, J.R. Smith, and M. Scheffler: Effect of hydrogen on Al2O3/Cu interfacial structure and adhesion. Phys. Rev. B 66, 073411 (2002).

    Article  CAS  Google Scholar 

  69. Z. Lodziana, J.K. Norskov, and P. Stoltze: The stability of the hydroxylated (0001) surface of α–Al2O3. J. Chem. Phys. 118, 11179 (2003).

    Article  CAS  Google Scholar 

  70. R. Schmid: A thermodynamic analysis of the Cu–O system with an associated solution model. Metall. Trans. B 14B, 473 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, P., Fujii, H. & Nogi, K. Effect of substrate surface orientation on the wettability and adhesion of α–Al2O3 single crystals by molten Cu. Journal of Materials Research 20, 940–951 (2005). https://doi.org/10.1557/JMR.2005.0127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0127

Navigation