Skip to main content
Log in

Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultra-refractory ceramic composites of composition ZrB2 + (5 to 20) vol% MoSi2 were produced by pressureless sintering at 1830 °C under argon atmosphere. Sintering cycles and microstructural analysis point out that at least 20 vol% molybdenum disilicide is necessary for obtaining a dense material. Thereafter, the composite 80 vol% ZrB2 + 20 vol% MoSi2 was used to test the thermal stability under oxidizing environment. Oxidation tests were carried out in flowing synthetic air in a thermogravimetric analyzer from 700 to 1400 °C with exposure time of 30 h. In the low-temperature range (700–1000 °C), the oxidation of the composite resembles that of monolithic ZrB2 ceramics, for temperatures >1200 °C the silica resulting from oxidation of molybdenum disilicide seals the sample surface, preventing zirconium diboride from fast degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Monteverde, A. Bellosi, and S. Guicciardi: Processing and properties of zirconium diboride-based composites. J. Eur. Ceram. Soc. 22, 279 (2002).

    Article  CAS  Google Scholar 

  2. F. Monteverde, S. Guicciardi, and A. Bellosi: Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater. Sci. Eng. A346, 310 (2003).

    Article  CAS  Google Scholar 

  3. F. Monteverde and A. Bellosi: Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hotpressed ZrB2. Adv. Eng. Mater. 7, 508 (2003).

    Article  Google Scholar 

  4. G-J. Zhang, Z-Y. Deng, N. Kondo, J-F. Yang, and T. Ohji: Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).

    Article  CAS  Google Scholar 

  5. W.C. Tripp and H.C. Graham: Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 °C. J. Electrochem. Soc. 118, 1195 (1971).

    Article  CAS  Google Scholar 

  6. J.B. Berkowitz-Mattuck: High-temperature oxidation, III-Zirconium and hafnium diborides. J. Electrochem. Soc. 113, 908 (1966).

    Article  CAS  Google Scholar 

  7. W.C. Tripp, H.H. Davis, and H.C. Graham: Effect of an SiC addition on the oxidation of ZrB2. Ceram. Bull. 52, 612 (1973).

    CAS  Google Scholar 

  8. T. Mizutani and A. Tsuge: Effects of metallic boride dispersion on fracture toughness and oxidation resistance in SiC ceramics. J. Ceram. Soc. Japan. Int. Ed. 100, 991 (1992).

    Article  CAS  Google Scholar 

  9. F. Monteverde and A. Bellosi: Oxidation of ZrB2-based ceramics in dry air. J. Electrochem. Soc. 150, B552 (2003).

  10. E.J. Opila and M.C. Halbig: Oxidation of ZrB2-SiC, in Ceramic Engineering and Science Proceedings, edited by M. Singh and T. Jessen (ACERS, 22, Westerville, OH, 2001), p. 221–228.

    Article  CAS  Google Scholar 

  11. M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykosky, and S.J. Causey: Mechanical thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).

    Article  CAS  Google Scholar 

  12. C.R. Wang, J.M. Yang, and W. Hoffman: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74, 272 (2002).

    Article  CAS  Google Scholar 

  13. Y-L. Jang and E.J. Lavernia: Review: Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557 (1994).

    Article  Google Scholar 

  14. C.G. McKamey, P.F. Tortorelli, J.H. Devan, and C.A. Carmichael: A study of pest oxidation in polycrystalline Mo Si2. J. Mater. Res. 7, 2747 (1992).

    Article  CAS  Google Scholar 

  15. P.J. Meschter: Low-temperature oxidation of molybdenum disilicide. Metall. Trans. 23, 1763 (1992).

    Article  Google Scholar 

  16. T.C. Chou and T.G. Nieh: Mechanism of MoSi2 pest during low temperature oxidation. J. Mater. Res. 8, 214 (1993).

    Article  CAS  Google Scholar 

  17. K. Natesan and S.C. Deevi: Oxidation behaviour of molybdenum silicides and their composites. Intermetallics 8, 1147 (2000).

    Article  CAS  Google Scholar 

  18. Y.T. Zhu, L. Shu, and D.P. Butt: Kinetics and products of molybdenum disilicide powder oxidation. J. Am. Ceram. Soc. 85, 507 (2002).

    Article  CAS  Google Scholar 

  19. K. Kurokawa, H. Houzumi, I. Saeki, and H. Takahashi: Low temperature oxidation of fully dense and porous MoSi2. Mater. Sci. Eng. A261, 292 (1999).

    Article  CAS  Google Scholar 

  20. K. Yanagihara, T. Maruyama, and N. Kazuhiro: Effect of third elements on the pesting suppression of Mo–Si–X intermetallics (X β Al, Ta, Ti, Zr and Y). Intermetallics 4, S133 (1996).

  21. H.M. Yokota, T. Kudoh, and T. Suzuki: Oxidation resistance of boronized MoSi2. Surf. Coat. Technol. 169–170, 171 (2003).

    Article  Google Scholar 

  22. A.L. Chamberlain, W.G. Fahrenholtz, and G.H. Hilmas: Characterization of zirconium diboride-molybdenum disilicide ceramics, in Advances in Ceramic Matrix Composites, Ceramic Transactions, edited by N.P. Bansal, J.P. Singh, W.M. Kriven, and H. Schneider (Am. Ceram. Soc., 153, Westerville, OH, 2003), p.299.

    CAS  Google Scholar 

  23. P.T.B. Shaffer: An oxidation resistant boride composition. Ceram. Bull. 41, 96 (1962).

    CAS  Google Scholar 

  24. M.M. Opeka, I.G. Talmy, and J.A. Zaykoski: Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).

    Article  CAS  Google Scholar 

  25. D. Sciti, S. Guicciardi, C. Melandri, and A. Bellosi: Hightemperature resistant in the AlN–SiC–MoSi2 system. J. Am. Ceram. Soc. 86, 1720 (2003).

    Article  CAS  Google Scholar 

  26. J.I. Lee, N.L. Hecht, and T-I. Mah: In-situ processing and properties of SiC/MoSi2 nanocomposites. J. Am. Ceram. Soc. 81, 421 (1998).

    Article  CAS  Google Scholar 

  27. A.E. McHale: Phase Diagram for Ceramists (Am. Ceram. Soc., 10, Westerville, OH, 1994), p. 144.

    Google Scholar 

  28. A.E. McHale: Phase Diagram for Ceramists (Am. Ceram. Soc., 10, Westerville, OH, 1994), p. 136.

    Google Scholar 

  29. A.E. McHale: Phase Diagram for Ceramists (Am. Ceram. Soc., 10, Westerville, OH, 1994), p. 174.

    Google Scholar 

  30. HSC Chemistry for Windows 5, Outokumpu Research Oy, Pori, Finland (2002).

  31. C. Veytizou, J.F. Quinson, O. Valfort, and G. Thomas: Zircon formation from amorphous silica and tetragonal zirconia: Kinetic study and modelling. Solid State Ionics 139, 315 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diletta Sciti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciti, D., Brach, M. & Bellosi, A. Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. Journal of Materials Research 20, 922–930 (2005). https://doi.org/10.1557/JMR.2005.0111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0111

Navigation