Skip to main content
Log in

Microwave-hydrothermal synthesis and photoluminescence characteristics of zinc oxide powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A microwave-hydrothermal process for the synthesis of crystalline zinc oxide powders has been developed in this study. Well-crystallized zinc oxide powders exhibiting different morphology, crystallinity, and particle size have been successfully prepared by controlling the process temperature and molarity of NH4OH in the starting solution. With increasing process temperature and NH4OH molarity during synthesis, the morphology of ZnO powders changes from flowerlike agglomeration to a well-developed rodlike shape. The band gap of ZnO powders increases with a decrease in the molarity of NH4OH during synthesis. Vacuum ultraviolet radiation (VUV) excited luminescence studies for ZnO powders reveal an excitation band at 161 nm possibly due to the absorption of O2- 2p electrons in the valence band. The VUV excitation band of ZnO powders observed at 161 nm will be useful for excitation of gas-discharged plasma display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Natsume and H. Sakata: Electrical conductivity and optical properties of ZnO films annealed in hydrogen atmosphere after chemical vapor deposition, J. Mater. Sci.-Mater. Electron. 12, 87 (2001).

    CAS  Google Scholar 

  2. K.B. Sundaram and A. Khan: Characterization and optimization of zinc oxide films by rf magnetron sputtering, Thin Solid Films 295, 87 (1997).

    CAS  Google Scholar 

  3. H. Ohta, M. Orita, M. Hirano and H. Hosono: Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO, J. Appl. Phys. 89, 5720 (2001).

    CAS  Google Scholar 

  4. M. Iwasaki, Y. Inubushi and S. Ito: New route to prepare ultrafine ZnO particles and its reaction mechanism, J. Mater. Sci. Lett. 16, 1503 (1997).

    CAS  Google Scholar 

  5. H. Eilers and B.M. Tissue: Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with CW-CO2 laser-heating, Mater. Lett. 24, 261 (1995).

    CAS  Google Scholar 

  6. L. Znaidi, G.J.A. IlliaA. Soler, S. Benyahia, C. Sanchez and A.V. Kanaev: Oriented ZnO thin films synthesis by sol-gel process for laser application, Thin Solid Films 428, 257 (2003).

    CAS  Google Scholar 

  7. D. Jezequel, J. Guenot, N. Jouini and F. Fievet: Submicrometer zinc-oxide particles-elaboration in polyol medium and morphological-characteristics, J. Mater. Res. 10, 77 (1995).

    CAS  Google Scholar 

  8. D. Andeen, L. Loeffler, N. Padture and F.F. Lange: Crystal chemistry of epitaxial ZnO on (111) MgAl2O4 produced by hydrothermal synthesis, J. Cryst. Growth 259, 103 (2003).

    CAS  Google Scholar 

  9. C.H. Lu and C.H. Yeh: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int. 26, 351 (2000).

    CAS  Google Scholar 

  10. S. Komarneni, R. Roy and Q.H. Li: Microwave-hydrothermal synthesis of ceramic powder, Mater. Res. Bull. 27, 1393 (1992).

    CAS  Google Scholar 

  11. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi and G.C. Pellacani: Microwave-hydrothermal synthesis of nanocrystalline zirconia powders, J. Am. Ceram. Soc. 84, 2728 (2001).

    CAS  Google Scholar 

  12. H. Katsuki and S. Komarneni: Microwave-hydrothermal synthesis of monodispersed nanophase alpha-Fe2O3, J. Am. Ceram. Soc. 84, 2313 (2001).

    CAS  Google Scholar 

  13. B.L. Newalkar, S. Komarneni and H. Katsuki: Microwave-hydrothermal synthesis and characterization of barium titanate powders, Mater. Res. Bull. 36, 2347 (2001).

    CAS  Google Scholar 

  14. S. Komarneni, J.S. Komarneni, B.L. Newalkar and S. Stout: Microwave-hydrothermal synthesis of Al-substituted tobermorite from zeolites, Mater. Res. Bull. 37, 1025 (2002).

    CAS  Google Scholar 

  15. N. Kumada, N. Kinomura and S. Komarneni: Microwave hydrothermal synthesis of ABi2O6 (A = Mg, Zn), Mater. Res. Bull. 33, 1411 (1998).

    CAS  Google Scholar 

  16. T. Strachowski, E. Grzanka, B. Palosz, B. Presz, L. Slusarski and W. Lojkowski: Microwave driven hydrothermal synthesis of zinc oxide nanopowders, Solid State Phenomena 94, 187 (2003).

    Google Scholar 

  17. J. Zhong, A.H. Kitai, P. Mascher and W. Puff: The influence of processing conditions on point-defects and luminescence-centers in ZnO, J. Electrochem. Soc. 140, 3644 (1993).

    CAS  Google Scholar 

  18. H.J. Egelhaaf and D. Oelkrug: Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO, J. Cryst. Growth 161, 190 (1996).

    CAS  Google Scholar 

  19. D.C. Look, C. Coskun, B. Claflin and G.C. Farlow: Electrical and optical properties of defects and impurities in ZnO, Physica B 340–342, 32 (2003).

    Google Scholar 

  20. L.X. Yi, Z. Xu, Y.B. Hou, X.Q. Zhang, Y.S. Wang and X.R. Xu: The ultraviolet and blue luminescence properties of ZnO: Zn thin film, Chin. Sci. Bull. 46, 1223 (2001).

    CAS  Google Scholar 

  21. Z. Fu, B. Yang, L. Li, C. Jia and W. Wu: An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposites, J. Phys. Conden. Mater. 15, 2867 (2003).

    CAS  Google Scholar 

  22. Powder Diffraction File, Card No. 36–1451. International Center for Diffraction Data, Newtown Square, PA.

  23. D. Chen, X. Jiao and G. Cheng: Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Commun. 113, 363 (2000).

    Google Scholar 

  24. H.Y. Xu, H. Wang, Y.C. Zhang, W.L. He, M.K. Zhu, B. Wang and H. Yan: Hydrothermal synthesis of zinc oxide powders with controllable morphology, Ceram. Int. 30, 93 (2004).

    CAS  Google Scholar 

  25. U. Koch, A. Fojtik, H. Weller and A. Henglein: Photochemistry of semiconductor colloids preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects, Chem. Phys. Lett. 122, 507 (1985).

    CAS  Google Scholar 

  26. L. Spanhel and M.A. Anderson: Semiconductor clusters in the sol-gel process-quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids, J. Am. Chem. Soc. 113, 2826 (1991).

    CAS  Google Scholar 

  27. P. Hoyer and H. Weller: Size-dependent redox potentials of quantized zinc-oxide measured with an optically transparent thin-layer electrode, Chem. Phys. Lett. 221, 379 (1994).

    CAS  Google Scholar 

  28. G. Redmond, A. Okeeffe, C. Burgess, C. Machale and D. Fitzmaurice: Spectroscopic determination of the flat-band potential of transparent nanocrystalline ZnO films, J. Phys. Chem. 97, 11081 (1993).

    CAS  Google Scholar 

  29. V. Noack and A. Eychmuller: Annealing of nanometer-sized zinc oxide particles, Chem. Mater. 14, 1411 (2002).

    CAS  Google Scholar 

  30. H.C. Ong, A.S.K. Li and G.T. Du: Depth profiling of ZnO thin films by cathodoluminescence, Appl. Phys. Lett. 78, 2667 (2001).

    CAS  Google Scholar 

  31. C.S. Shi, Z.X. Fu, C.X. Guo, X.L. Ye, Y.G. Wei, J. Deng, J.Y. Shi and G.B. Zhang: UV luminescence and spectral properties of ZnO films deposited on Si substrates, J. Elec. Spect. Rel. Phen. 103, 629 (1999).

    Google Scholar 

  32. A.F. Kohan, G. Ceder, D. Morgan and Van C.G. Walle de: First-principles study of native point defects in ZnO, Phys. Rev. B 61, 15019 (2000).

    CAS  Google Scholar 

  33. S.A.M. Lima, F.A. Sigoli, M. Jafelicci Jr. and M.R. Davolos: Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater. 3, 749 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hsin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, CH., Hwang, WJ. & Godbole, S.V. Microwave-hydrothermal synthesis and photoluminescence characteristics of zinc oxide powders. Journal of Materials Research 20, 464–471 (2005). https://doi.org/10.1557/JMR.2005.0067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0067

Navigation