Skip to main content
Log in

Elastic and structural properties of alkaline-calcium silica hydrogels

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Brillouin scattering has been used to study the elastic properties of alkaline-calcium silica hydrogels synthesized from the precipitation of sodium silicate solution with calcium hydroxide. To the best of our knowledge, this is the first determination of the bulk elastic moduli for this type of alkaline-calcium silica hydrogel, also referred to as the alkali-silica reaction (ASR) gel. The measured bulk moduli for the alkaline-calcium silica hydrogels were found to be between 4 and 8 GPa for the gel containing 0.08 M Ca(OH)2 and between 10 and 25 GPa for the gel containing 0.8 M Ca(OH)2, increasing with increasing pressure. Fourier transform infrared measurements were made to correlate the moduli to the silica speciation and network formation within the gels as a function of Ca(OH)2 content. Significantly, for the concentrations considered, both the interconnection of the silica species and the bulk modulus increased with increasing Ca(OH)2 content. On this basis, Brillouin scattering was confirmed to be a useful method for distinguishing between the bulk moduli of alkaline-calcium silica hydrogels in terms of chemical composition. The potential for further characterization of ASR gels as a function of composition and water content by this technique is highly promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Marfil and P.J. Maiza: Deteriorated pavements due to the alkali-silica reaction: A petrographic study of three cases in Argentina, Cem. Conc. Res. 31, 1017 (2001).

    Article  CAS  Google Scholar 

  2. D.W. Hobbs: Expansion of concrete due to the alkali-silica reaction: An explanation, Mag. Conc. Res. 30, 15 (1978).

    Google Scholar 

  3. D.-X. Cong and R.J. Kirkpatrick: Silicon-29 MAS NMR spectroscopic investigation of alkali silica reaction product gels, Cem. Conc. Res. 23, 811 (1993).

    Article  CAS  Google Scholar 

  4. O. Bernard, J.-F. Ulm and E. Lemarchand: A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cem. Conc. Res. 33, 1293 (2003).

    Article  CAS  Google Scholar 

  5. F.J. Ulm, O. Coussy, L. Kefei and C. Larive: Thermo-chemo-mechanics of ASR expansion in concrete structures, J. Eng. Mech. 233 (2000).

    Google Scholar 

  6. E. Lemarchand, L. Dormieux and J.-F. Ulm: Elements of micromechanics of ASR-induced swelling in concrete structures, J. of Conc. Sci. Eng. 4, 12 (2002).

    CAS  Google Scholar 

  7. F. Gaboriaud, D. Chaumont, A. Nonat, B. Hanquet and A. Craeivich: Study of the influence of alkaline ions (Li, Na and K) on the structure of the silicate entities in silico alkaline sol and on the formation of the silico-calco-alkaline gel, J. Sol-Gel Sci. Technol. 13, 353 (1998).

    Article  CAS  Google Scholar 

  8. F. Gaboriaud, A. Nonat, D. Chaumont, A. Craievich and B. Hanquet: 29Si NMR and small-angle x-ray scattering studies of the effect of alkaline ions (Li+, Na+, and K+) in silico-alkaline sols, J. Phys. Chem. B 103, 2091 (1999).

    Article  CAS  Google Scholar 

  9. L. Struble and S. Diamond: Unstable swelling behaviour of alkali silica gels, Cem. Conc. Res. 11, 611 (1981).

    Article  CAS  Google Scholar 

  10. T. Knudsen and N. Thaulow: Quantitative microanalyses of alkali-silica gel in concrete, Cem. Conc. Res. 5, 443 (1975).

    Article  CAS  Google Scholar 

  11. F. Gaboriaud, D. Chaumont, A. Nonat and A. Craievich: Fractal structure of basic silica gels with low Ca content, J. Appl. Crystallogr. 33, 597 (2000).

    Article  CAS  Google Scholar 

  12. B. Mather: Sulfate soundness, sulfate attack and expansive cement in concrete, in International Symposium on the Durability of Concrete, Preliminary Report Part II (Academia, Prague, 1969), pp. C–209–C–220.

    Google Scholar 

  13. J.J. Beaudoin and B.T. Tamtsia: Creep of hardened cement paste—The role of interfacial phenomena, Interface Sci. 12, 351 (2004).

    Article  Google Scholar 

  14. A. Jayaraman: Diamond anvil cell and high-pressure physical investigations, Rev. Mod. Phys. 55, 65 (1983).

    Article  CAS  Google Scholar 

  15. C.H. Whitfield, E.M. Brody and W.A. Bassett: Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell, Rev. Sci. Instrum. 47, 942 (1976).

    Article  CAS  Google Scholar 

  16. G.J. Piermarini and S. Block: Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale, Rev. Sci. Instrum. 46, 973 (1975).

    Article  CAS  Google Scholar 

  17. J.R. Sandercock: Light scattering solids, III: Recent results, in Topics of Applied Physics, Vol. 51, edited by M. Cardona and G. Guntherodt (Springer-Verlag, Berlin, Germany, 1982), p. 173.

    Google Scholar 

  18. S.N. Tkachev and J.D. Bass: Brillouin scattering study of pentane at high pressure, J. Chem. Phys. 104, 10059 (1996).

    Article  CAS  Google Scholar 

  19. F. Gaboriaud, A. Nonat, D. Chaumont and A. Craievich: Aggregation processes and formation of silico-calco-alkaline gels under high ionic strength, J. Colloid Interface Sci. 253, 140 (2002).

    Article  CAS  Google Scholar 

  20. A. Marinangeli, M.A. Morelli, R. Simoni and A. Bertoluzza: A Raman and infrared study of aqueous solutions of sodium silicates as a function of pH, Canad. J. Spectrosc. 23, 173 (1978).

    CAS  Google Scholar 

  21. R.M. Almeida and C.G. Pantano: Structural investigation of silica gel films by infrared spectroscopy, J. App. Phys. 68, 4225 (1990).

    Article  CAS  Google Scholar 

  22. N. Viart, D. Niznansky and J.L. Rehspringer: Structural evolution of a formamide modified sol—Spectroscopic study, J. Sol-Gel Sci. Technol. 8, 183 (1997).

    CAS  Google Scholar 

  23. A. Chmel, E.K. Mazurina and V.S. Shashkin: Vibrational spectra and deffect structure of silica prepared by non-organic sol-gel process, J. Non-Cryst. Solids 122, 285 (1990).

    Article  CAS  Google Scholar 

  24. J.L. Bass and G.L. Turner: Anion distributions in sodium silicate solutions. Characterisation by 29Si NMR and infrared spectroscopies, and vapour phase osmometry, J. Phys. Chem. B 101, 10638 (1997).

    Article  CAS  Google Scholar 

  25. J.D. Ortego and Y. Barroeta: Leaching effects on silicate polymerisation. An FTIR and 29Si NMR study of lead and zinc in portland cement, Environ. Sci. Technol. 25, 1171 (1991).

    Article  CAS  Google Scholar 

  26. T.L. Hughes, C.M. Methven, T.G.J. Jones, S.E. Pelham and P. Franklin: The use of Fourier transform infrared spectroscopy to characterize cement powders, cement hydration and the role of additives, Spec. Pub. R. Soc. Chem. 159, 99 (1994).

    CAS  Google Scholar 

  27. F. Gaboriaud, A. Nonat, D. Chaumont and A. Craievich: Aggregation and gel formation in basic silico-calco-alkaline solutions studied: A SAXS, SANS, and ELS study, J. Phys. Chem. B 103, 5775 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Phair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phair, J.W., Tkachev, S.N., Manghnani, M.H. et al. Elastic and structural properties of alkaline-calcium silica hydrogels. Journal of Materials Research 20, 344–349 (2005). https://doi.org/10.1557/JMR.2005.0061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0061

Navigation