Skip to main content
Log in

Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A two-step replication strategy to two-dimensional ordered polymer hollow sphere and convex structure arrays is presented based on polystyrene colloidal monolayer and inverse opal made of FeO(OH). We can control formation of a small hole on top of the hollow spheres by the concentration of polymer precursors, which could be of importance in selective permeability, nutrient and drug deliver, biotechnology, and even study of black-body irradiation in micro or nano space. In addition, the fabrication strategy is suitable for the most soluble polymer materials, which can solidify when they are concentrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand and H. Baltes: Smart single-chip gas sensor microsystem, Nature 414, 293 (2001).

    Article  CAS  Google Scholar 

  2. H. Sirringhaus, N. Tessler and R.H. Friend: Integrated optoelectronic devices based on conjugated polymers, Science 280, 1741 (1998).

    Article  CAS  Google Scholar 

  3. M. Tanaka, T. Motomura, M. Kawada, T. Anzai, T. Shiroya, K. Shimura and M. Onishi: Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—Relationship between protein adsorption and platelet adhesion on PMEA surface, Biomaterials 21, 1471 (2000).

    Article  CAS  Google Scholar 

  4. D. Wang and F. Caruso: Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies, Adv. Mater. 13, 350 (2001).

    Article  CAS  Google Scholar 

  5. S.H. Park and Y. Xia: Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters, Langmuir 15, 266 (1999).

    Article  CAS  Google Scholar 

  6. Y. Sakurai, S. Okuda, H. Nishiguchi, N. Nagayama and M. Yokoyama: Microlens array fabrication based on polymer electrodeposition, J. Mater. Chem. 13, 1862 (2003).

    Article  CAS  Google Scholar 

  7. E. Ostuni, C.S. Chen, D.E. Ingber and G.M. Whitesides: Selective deposition of proteins and cells in arrays of microwells, Langmuir 17, 2828 (2001).

    Article  CAS  Google Scholar 

  8. P. Jiang, K.S. Hwang, D.M. Mittleman, J.F. Bertone and V.L. Colvin: Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J. Am. Chem. Soc. 121, 11630 (1999).

    Article  CAS  Google Scholar 

  9. H. Fudouzi and Y. Xia: Colloidal crystals with tunable colors and their use as photonic papers, Langmuir 19, 9653 (2003).

    Article  CAS  Google Scholar 

  10. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning and A.J. Turberfield: Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000).

    Article  CAS  Google Scholar 

  11. Y. Xia and G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci. 28, 153 (1998).

    Article  CAS  Google Scholar 

  12. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul and G.M. Whitesides: Improved pattern transfer in soft lithography using composite stamps, Langmuir 18, 5314 (2002).

    Article  CAS  Google Scholar 

  13. Y.-D. Kim, S.K. Tripathy, L. Li and J. Kumar: Laser-induced holographic surface relief gratings on nonlinear optical polymer films, Appl. Phys. Lett. 66, 1166 (1995).

    Article  CAS  Google Scholar 

  14. A. Imhof and D.J. Fine: Ordered macroporous materials by emulsion templating, Nature 389, 948 (1997).

    Article  CAS  Google Scholar 

  15. O.D. Velev, A.M. Lenhoff and E.W. Kaler: A class of microstructured particles through colloidal crystallization, Science 287, 2240 (2000).

    Article  CAS  Google Scholar 

  16. D.K. Yi, M.-E. Seo and Y.-D. Kim: Surface-modulation-controlled three-dimensional colloidal crystals, Appl. Phys. Lett. 80, 225 (2002).

    Article  CAS  Google Scholar 

  17. H. Zheng, I. Lee, M.F. Rubner and P. Hammond: Two component particle arrays on patterned polyelectrolyte multilayer templates, Adv. Mater. 14, 569 (2002).

    Article  CAS  Google Scholar 

  18. B.T. Holland, C.F. Blanford and A. Stein: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science 281, 538 (1998).

    Article  CAS  Google Scholar 

  19. J.E.G. WijnhovenJ. and W.L. Vos: Preparation of photonic crystals made of air spheres in titania, Science 281, 802 (1998).

    Article  Google Scholar 

  20. D. Wang and F. Caruso: Lithium niobate inverse opals prepared by templating colloidal crystals of polyelectrolyte-coated spheres, Adv. Mater. 15, 205 (2003).

    Article  CAS  Google Scholar 

  21. X. Chen, Z. Chen, N. Fu, G. Lu and B. Yang: Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals, Adv. Mater. 15, 1413 (2003).

    Article  CAS  Google Scholar 

  22. F.Q. Sun, W.P. Cai, Y. Li, B.Q. Cao, Y. Lei and L.D. Zhang: Morphology-controlled growth of large-area two-dimensional ordered pore arrays, Adv. Funct. Mater. 14, 283 (2004).

    Article  CAS  Google Scholar 

  23. K.M. Kulinowski, P. Jiang, H. Vaswani and V.L. Colvin: Porous metals from colloidal from colloidal templates, Adv. Mater. 12, 833 (2000).

    Article  CAS  Google Scholar 

  24. P. Jiang, K.S. Hwang, D.M. Mittleman, J.F. Bertone and V.L. Colvin: Template directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J. Am. Chem. Soc. 121, 11630 (1999).

    Article  CAS  Google Scholar 

  25. P. Jiang, J. Cizeron, J.F. Bertone and V.L. Colvin: Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121, 7957 (1999).

    Article  CAS  Google Scholar 

  26. S.H. Park and Y. Xia: Macroporous memberanes with highly ordered and three-dimensionally interconnected spherical pores, Adv. Mater. 10, 1045 (1998).

    Article  CAS  Google Scholar 

  27. S.H. Park and Y. Xia: Fabrication of three-dimensional macroporous membranes with crystalline lattices of polymer beads as templates, Chem. Mater. 7, 1745 (1998).

    Article  Google Scholar 

  28. T.R. Jensen, G.C. Schatz and R.P.V. Duyne: Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling, J. Phys. Chem. B 103, 2394 (1999).

    Article  CAS  Google Scholar 

  29. D.K. Yi and D.Y. Kim: Polymer nanosphere lithography: fabrication of an ordered trigonal polymeric nanostructure, Chem. Commun. 3, 982 (2003).

    Article  CAS  Google Scholar 

  30. M. Winzer, M. Kleiber, N. Dix and R. Wiesendanger: Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography, Appl. Phys. A 63, 617 (1996).

    Article  CAS  Google Scholar 

  31. Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, D.Z. Wang, J.G. Wen, K. Kempa and Z.F. Ren: Growth of large periodic arrays of carbon nanotubes, Appl. Phys. Lett. 82, 460 (2003).

    Article  CAS  Google Scholar 

  32. A. Imhof: Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells, Langmuir 17, 3579 (2001).

    Article  CAS  Google Scholar 

  33. M.L. Breen, A.D. Dinsmore, R.H. Pink, S.B. Qadri and B.R. Ratna: Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals, Langmuir 17, 903 (2001).

    Article  CAS  Google Scholar 

  34. S. Chah, J.H. Fendler and J. Yi: Nanostructured gold hollow microspheres prepared on dissolvable ceramic hollow sphere templates, J. Colloid Interface Sci. 250, 142 (2002).

    Article  CAS  Google Scholar 

  35. R. Castillo, B. Koch, P. Ruiz and B. Delmon: Influence of preparation methods on the texture and structure of titania supported on silica, J. Mater. Chem. 4, 903 (1994).

    Article  CAS  Google Scholar 

  36. W. Meier: Polymer nanocapsules, Chem. Soc. Rev. 29, 295 (2000).

    Article  CAS  Google Scholar 

  37. H. Huang and E.E. Resen: Nanocages derived from shell cross-linked micelle templates, J. Am. Chem. Soc. 121, 3805 (1999).

    Article  CAS  Google Scholar 

  38. C.L. Haynes and R.P.V. Duyne: Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105, 5599 (2001).

    Article  CAS  Google Scholar 

  39. J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen and R.P.V. Duyne: Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B 103, 3854 (1999).

    Article  CAS  Google Scholar 

  40. R. Djalali, J. Samson and H. Matsui: Doughnut-shaped peptide nano-assemblies and their applications as nanoreactors, J. Am. Chem. Soc. 126, 7935 (2004).

    Article  CAS  Google Scholar 

  41. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch and D.A. Weitz: Colloidosomes: Selectively permeable capsules composed of colloidal particles, Science 298, 1006 (2002).

    Article  CAS  Google Scholar 

  42. Y. Lu, Y. Yin and Y. Xia: A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers, Adv. Mater. 13, 34 (2001).

    Article  CAS  Google Scholar 

  43. E. Gu, H.W. Choi, C. Liu, C. Griffin, J.M. Girkin, I.M. Watson, M.D. Dawson, G. McConnell and A.M. Gurney: Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays, Appl. Phys. Lett. 84, 2754 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Cai, W., Duan, G. et al. Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films. Journal of Materials Research 20, 338–343 (2005). https://doi.org/10.1557/JMR.2005.0060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0060

Navigation