Skip to main content
Log in

Formation of Al2O3 during heating of an Al/TiO2 nanocomposite powder

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The solid-state reactions between Al and TiO2 that occur during heating an Al/TiO2 nanocomposite powder produced using high-energy mechanical milling have been studied using thermal analysis, x-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) in combination with compositional microanalysis. It has been found that Al and TiO2 react in the temperature range from 650 to 800 °C, forming Al3Ti, but XRD analysis, SEM examination, and detailed TEM characterization of the powder particles heated to 800 °C show that the expected Al2O3 does not form. However, a–Al2O3 particles form during heating from 800 to 1000 °C. The possible reasons for the time gap between formation of Al3Ti and Al2O3 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Maity, P.N. Chakraborty and S.C. Panigrahi: Processing and properties of Al-Al2O3 (TiO2) in situ particle composite, J. Mater. Process. Technol. 53, 857 (1995).

    Article  Google Scholar 

  2. C.F. Feng and L. Froyen: Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composites, Composites Part A 31, 385 (2000).

    Article  Google Scholar 

  3. I.C. Barlow, H. Jones and W.M. Rainforth: The effect of heat treatment at 500–655 °C on the microstructure and properties of mechanically alloyed Al-Ti-O based material, Mater. Sci. Eng. A 351, 344 (2003).

    Article  Google Scholar 

  4. I.C. Barlow, H. Jones and W.M. Rainforth: Evolution of microstructure and hardening, and the role of Al3Ti coarsening, during extended thermal treatment in mechanically alloyed Al-Ti-O based materials, Acta Mater. 49, 1209 (2001).

    Article  CAS  Google Scholar 

  5. H.X. Peng, D.Z. Wang, L. Geng, C.K. Yao, J. F and Mao: Evaluation of the microstructure of in-situ reaction processed Al3Ti-Al2O3-Al composite, Scripta Mater. 37, 199 (1997).

    Article  CAS  Google Scholar 

  6. J. Pan, D.M. Yang, J.H. Li, X.G. Ning, H.Q. Ye, H. Fukunaga and Z.K. Yao: Microstructural study of the interface reaction between titania whiskers and aluminium, Compos. Sci. Technol. 57, 319 (1997).

    Article  CAS  Google Scholar 

  7. I. Tsuchitori and H. Fukunaga: Effect of impurity elements on reaction of reinforcement with matrix in rutile type titanium oxide/aluminium composites, J. Jpn. Inst. Met. 59, 1306 (1995).

    Article  CAS  Google Scholar 

  8. I. Tsuchitori, G. Sasaki and H. Fukunaga: Enhanced solid state reaction of TiO2/Al composites by doping, J. Jpn. Inst. Met. 61, 544 (1997).

    Article  CAS  Google Scholar 

  9. N. Claussen, D.E. Garcia and R. Janssen: Reaction sintering of alumina-aluminide alloys (3A), J. Mater. Res. 11, 2884 (1996).

    Article  CAS  Google Scholar 

  10. S. Schicker, D.E. Garcia, J. Bruhn, R. Janssen and N. Claussen: Reaction synthesized Al2O3-based intermetallic composites, Acta Mater. 46, 2485 (1998).

    Article  CAS  Google Scholar 

  11. N.J. Welham: Mechanical activation of the solid-state reaction between Al and TiO2, Mater. Sci. Eng. A 255, 81 (1998).

    Article  Google Scholar 

  12. D.L. Zhang and M. Newby: Titanium alloy based dispersion-strengthened composites, U.S. Patent No. US6 264 719 B1, 1999.

    Google Scholar 

  13. D.L. Zhang, D.Y. Ying and G. Adam: Reaction kinetics and microstructural evolution during heating high-energy ball milled Al-metal oxide composite powders, J. Metastable Nanocrystalline Mater. 13, 287 (2002).

    Article  CAS  Google Scholar 

  14. D.L. Zhang, Z.H. Cai and M. Newby: Low cost Ti(Al,O)/Al2O3 and TixAly/Al2O3 composites, Mater. Tech. Adv. Performance Mater. 18, 94 (2003).

    CAS  Google Scholar 

  15. D.Y. Ying, D.L. Zhang and M. Newby: Solid state reactions during heating mechanically milled Al/TiO2 composite powders, Metall. Mater. Trans. A 35A, 2115 (2004).

    Article  CAS  Google Scholar 

  16. W. Lefebvre, A. Loiseau, M. Thomas and A. Menand: Influence of oxygen on the α→γ massive transformation in a Ti-48at.%Al alloy, Philos. Mag. A 82, 2341 (2002).

    CAS  Google Scholar 

  17. G.J. Fan, M.X. Quan and Z.Q. Hu: Supersaturated Al(Ti) solid solutions with partial L12 ordering prepared by mechanical alloying, Scripta Metall. Mater. 33, 377 (1995).

    Article  CAS  Google Scholar 

  18. M. Oehring, T. Klassen and R. Bormann: The formation of metastable Ti-Al solid solution by mechanical alloying and ball milling, J. Mater. Res. 8, 2819 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D.L., Ying, D.Y. & Munroe, P. Formation of Al2O3 during heating of an Al/TiO2 nanocomposite powder. Journal of Materials Research 20, 307–313 (2005). https://doi.org/10.1557/JMR.2005.0059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0059

Navigation