Skip to main content
Log in

Synthesis of SiC microtube with villus-like morphology and SiC fiber

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Silicon carbide (SiC) microtubes were synthesized and characterized via a vapor–solid (VS) reaction of carbon fiber (Csolid) and SiO(gas). The synthesis mechanisms were investigated. The precursor led complete conversion of [SiO(gas) + C(solid)] into [SiC(solid) + CO(gas)] through overall reaction under inert gas flow at and above 1350 °C. Carbon fibers with small surface area (0.7–2.0 m2 g-1) were gradually converted to SiC microtubes with large specific surface area (45–63 m2 g-1). Inner surface of SiC microtubes indicated a villus-like morphology, which consisted of submicron-sized SiC villi. The outer surface of the SiC microtubes was smooth. Inner surface morphology of SiC microtubes was dependent upon synthesizing temperature. Thickness of villus-like layer in SiC microtubes increased with increasing synthesizing temperature, showing 0.25 and 0.5 at 1350 and 1400 °C, respectively. Both VS and gas–liquid–solid (VLS) growth mechanisms were investigated in synthesis of SiC fiber as a reaction byproduct, and the reaction was governed by both growth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Russel-Floyd, B. Harris, R.G. Cooke, J. Laurie, F.W. Hammett, R.W. Jones and T. Wang: Application of sol-gel processing techniques for the manufacture of fiber-reinforced ceramics, J. Am. Ceram. Soc. 76, 2635 (1993).

    Google Scholar 

  2. J.D. Mackenzie: Crystallization of gel-derived glasses, J. Non-Cryst. Solids 100, 162 (1988).

    CAS  Google Scholar 

  3. C. Vix-Guterl and P. Ehrburger: Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation, Carbon 35, 1587 (1997).

    CAS  Google Scholar 

  4. C. Vix-Guterl, B. McEnaney and P. Ehrburger: SiC material produced by carbothermal reduction of a freeze gel silica-carbon artefact, J. Eur. Ceram. Soc. 19, 427 (1999).

    CAS  Google Scholar 

  5. P.W. Lednor: Synthesis, stability, and catalytic properties of high surface area silicon oxynitride and silicon carbide, Catal. Today 15, 243 (1992).

    CAS  Google Scholar 

  6. M.A. Vannice, Y.L. Chao and R.M. Friedman: The preparation and use of high surface area silicon carbide catalyst supports, Appl. Catal. 20, 91 (1986).

    CAS  Google Scholar 

  7. M. Kizling Boutonnet, P. Stenius, S. Andersson and A. Frestad: Characterization and catalytic activity of silicon carbide powder as catalyst support in exhaust catalysts, Appl Catal B: Environ. 1, 149 (1992).

    Google Scholar 

  8. R. Moene, H.T. Boon, J. Schooman, M. Makkee and J.A. Moulijn: Coating of activated carbon with silicon carbide by chemical vapour deposition, Carbon 34, 567 (1996).

    CAS  Google Scholar 

  9. M.J. Ledoux, J. Guille, S. Hantzer, and D. Dubots: Process for the production of silicon carbide with a large specific surface area and use for high-temperature catalytic reactions. U.S. Patent No. 4914070 (Pechiney Electrometallurgie, 1990).

    Google Scholar 

  10. M.J. Ledoux, S. Hantzer, C. Pham-Huu, J.L. Guille and M.P. Desaneaux: New synthesis and uses of high specific surface area SiC as a catalytic support that is chemically inert and has high thermal resistance, J. Catal. 114, 176 (1988).

    CAS  Google Scholar 

  11. N. Keller, C. Pham-Huu, S. Roy, M.J. Ledoux, Estournèc. S and J.L. Guille: Influence of the preparation conditions on the synthesis of high surface area SiC for use as a heterogeneous catalyst support, J. Mater. Sci. 34, 3189 (1999).

    CAS  Google Scholar 

  12. N. Keller, C. Pham-Huu, M.J. Ledoux, C. Estournes and G. Ehert: Preparation and characterization of SiC microtubes, Appl. Catal. A 187, 255 (1999).

    CAS  Google Scholar 

  13. J.W. Kim, S.S. Lee, D.H. Park, Y.G. Jung, J.H. Lee and C.Y. Jo: Effect of inert gas flow nature on the SiC microtube synthesis, Key Eng. Mater. (2004, in press).

    Google Scholar 

  14. C. Vix-Guterl, I. Alix, P. Gibot and P. Ehrburger: Formation of tubular silicon carbide from a carbon-silica material by using a reactive replica technique: Infra-red characterisation, Appl. Surf. Sci. 210, 329 (2003).

    CAS  Google Scholar 

  15. R. Moene, M. Makkee and J.A. Moulijin: High surface area silicon carbide as catalyst support characterization and stability, Appl. Catal. A 167, 321 (1998).

    CAS  Google Scholar 

  16. Y.H. Tang, Y.F. Zheng, C.S. Lee, N. Wang, S.T. Lee and T.K. Sham: Carbon monoxide-assisted growth of carbon nanotubes, Appl. Phys. Lett. 342, 259 (2001).

    CAS  Google Scholar 

  17. N.W. Hurst, S.J. Gentry, A. Jones and B.D. McNicol: Temperature programmed reduction, Catal. Rev. Sci. Eng. 24, 233 (1982).

    CAS  Google Scholar 

  18. J.L. Falconer and K.A. Schwartz: Temperature-programmed desorption and reaction: Applications to supported catalysts, Catal. Rev. Sci. Eng. 25, 141 (1983).

    CAS  Google Scholar 

  19. S.D. Robertson: Carbon formation from methane pyrolysis over some transition metal surfaces–I. Nature and properties of the carbons formed, Carbon 8, 365 (1970).

    CAS  Google Scholar 

  20. L. Wang, H. Wada and L.F. Allard: Synthesis and characterization of SiC whiskers, J. Mater. Res. 7, 148 (1992).

    CAS  Google Scholar 

  21. S.-W. Seo and K. Koumoto: Stacking faults in ß-SiC formed during carbothermal reduction of SiO2, J. Am. Ceram. Soc. 79, 1777 (1996).

    CAS  Google Scholar 

  22. J.V. Milevski, F.D. Gag, J.J. Petrovic and S.R. Skaggs: Growth of beta-silicon carbide whiskers by the VLS process, J. Mater. Sci. 20, 1160 (1985).

    Google Scholar 

  23. L. Geng and J. Zhang: A study of the crystal structure of a commercial ß–SiC whisker by high-resolution TEM, Mater. Cem. Phy. 84, 243 (2004).

    CAS  Google Scholar 

  24. L. Wang, H. Wada and L.F. Allard: Synthesis and characterization of SiC whiskers, J. Mater. Res. 7, 148 (1992).

    CAS  Google Scholar 

  25. J.V. Milevski, F.D. Gag, J.J. Petrovic and S.R. Skaggs: Growth of beta-silicon carbide whiskers by the VLS process, J. Mater. Sci. 20, 1160 (1985).

    Google Scholar 

  26. H. Wang, Y. Berta and G.S. Fischman: Microstructure of silicon carbide whiskers synthesized by carbothermal reduction of silicon nitride, J. Am. Ceram. Soc. 75, 1080 (1992).

    CAS  Google Scholar 

  27. R.D. Jong and R.A. McCauley: Growth of twinned ß-silicon carbide whiskers by the vapor-liquid-solid process, J. Am. Ceram. Soc. 70 C–338 (1987).

    Google Scholar 

  28. H.J. Choi and J.G. Lee: Continuous synthesis of silicon carbide whiskers, J. Mater. Sci. 30, 1982 (1995).

    CAS  Google Scholar 

  29. S.-W. Seo and K. Koumoto: Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of ß-SiC particles in the system SiO2-C-H2, J. Am. Ceram. Soc. 81, 1255 (1998).

    CAS  Google Scholar 

  30. J.-H. Choi and G.-J. Lee: Stacking faults in silicon carbide whiskers, Ceram. Int. 26, 7 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baig-Gyu Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JW., Lee, SS., Jung, YG. et al. Synthesis of SiC microtube with villus-like morphology and SiC fiber. Journal of Materials Research 20, 409–416 (2005). https://doi.org/10.1557/JMR.2005.0049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0049

Navigation