Skip to main content
Log in

Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Enthalpies of formation from constituent oxides and elements at 298 K were determined by high-temperature oxide melt solution calorimetry for a group of technologically important perovskites LaMO3 (M = Cr, Fe, Co, and Ni). The enthalpies of formation of LaCrO3 and LaFeO3 from oxides (La2O3 and Cr2O3 or Fe2O3) are–70.06 ± 2.79 kJ/mol and–64.58 ± 2.32 kJ/mol, respectively. The enthalpies of formation of LaCoO3 and LaNiO3 from oxides (La2O3 and CoO or NiO) and O2 are -107.64 ± 1.77 kJ/mol and–57.31 ± 2.55 kJ/mol, respectively. All these data are evaluated and found to be consistent with literature values obtained using other methods. The relative stability among these four perovskites decreases in the order of Cr, Fe, Co, Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  2. J.Y. Park and G.M. Choi: Electrical conductivity of Sr and Mg doped LaAlO3. Solid State Ionics 154, 535 (2002).

    Article  Google Scholar 

  3. T. Ishinhara, T. Matsuda, and Y. Takita: Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).

    Article  Google Scholar 

  4. D. Lybye and N. Bonanos: Proton and oxide ion conductivity of doped LaScO3. Solid State Ionics 125, 339 (1999).

    Article  CAS  Google Scholar 

  5. H. He, X. Huang, and L. Chen: Sr-doped LaInO3 and its possible application in a single layer SOFC. Solid State Ionics 130, 183 (2000).

    Article  CAS  Google Scholar 

  6. M. Mori, T. Yamamoto, H. Itoh, and T. Watanabe: Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells. J. Mater. Sci. 32, 2423 (1997).

    Article  CAS  Google Scholar 

  7. D.P. Karim and A.T. Aldred: Localized level hopping transport in La(Sr)CrO3. Phys. Rev. B. 20, 2255 (1979).

    Article  CAS  Google Scholar 

  8. A. Hammouche, E.L. Schouler, and M. Henault: Electrical Properties of La1-xSrxMnO3 for x _0.5. Solid State Ionics 28, 1205 (1988).

    Article  Google Scholar 

  9. D. Kuscer, D. Hanzel, J. Holc, M. Hrovat, and D. Kolar: Defect structure and electrical properties of La1-ySryFe1-xAlxO3-_. J. Am. Ceram. Soc. 84, 1148 (2001).

    Article  CAS  Google Scholar 

  10. N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherpanov, and P. Kofstad: Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ionics 80, 189 (1995).

    Article  CAS  Google Scholar 

  11. H. Nagamoto, I. Mochida, K. Kagotani, and H. Inoue: Change of thermal expansion coefficient and electrical conductivity of LaCo1-xMxO3 (M _Fe, Ni). J. Mater. Res. 8, 3158 (1993).

    Article  CAS  Google Scholar 

  12. D. Mantzavinos, A. Hartley, I.S. Metcalfe, and M. Sahibzada: Oxygen stoichiometries in La1-xSrxCo1-yAlyO3-_at reduced oxygen partial pressures. Solid State Ionics 134, 103 (2000).

    Article  CAS  Google Scholar 

  13. M. Hrovat, N. Katsarakis, K. Reichmann, S. Bernik, D. Kuscer, and J. Holc: Characterization of LaNi1-xCoxO3 as a possible SOFC cathode material. Solid State Ionics 83, 99 (1996).

    Article  CAS  Google Scholar 

  14. K. Huang, H.Y. Lee, and J.B. Goodenough: Sr- and Ni-doped LaCoO3 and LaFeO3 perovskites. J. Electrochem. Soc. 145, 3220 (1998).

    Article  CAS  Google Scholar 

  15. A. Navrotsky: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).

    Article  CAS  Google Scholar 

  16. A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  17. J. Cheng and A. Navrotsky: Enthalpies of formation of LaBO3 perovskites (B _Al, Ga, Sc, and In. J. Mater. Res. 18, 2501 (2003).

    Article  CAS  Google Scholar 

  18. J. Cheng and A. Navrotsky: Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites. J. Solid State Chem. 177, 126 (2004).

    Article  CAS  Google Scholar 

  19. H. Provendier, C. Petit, J-L. Schmitt, A. Kiennemann, and C. Chaumont: Characterization of the solid solution La(Ni,Fe)O3 prepared via a sol-gel related method using propionic acid. J. Mater. Sci. 34, 4121 (1999).

    Article  CAS  Google Scholar 

  20. J. Majzlan, A. Navrotsky, and B.J. Evans: Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase. Phys. Chem. Miner. 29, 515 (2002).

    Article  CAS  Google Scholar 

  21. C. Drouet and A. Navrotsky: Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochim. Cosmochim. Acta 67, 2063 (2003).

    Article  CAS  Google Scholar 

  22. M. Wang and A. Navrotsky: Enthalpy of formation of LiNiO2, LiCoO2, and their solid solution, LaNi1-xCoxO2. Solid State Ionics 166, 167 (2004).

    Article  CAS  Google Scholar 

  23. F. Muller and O.J. Kleppa: Thermodynamics of formation of chromite spinels. J. Inorg. Nucl. Chem. 35, 2673 (1973).

    Article  Google Scholar 

  24. B.J. Wood and O.J. Kleppa: Thermochemistry of forsteritefayalite olivine solutions. Geochim. Cosmochim. Acta 45, 529 (1981).

    Article  CAS  Google Scholar 

  25. B.J. Wood and O.J. Kleppa: Chromium-aluminum mixing in garnet: A thermochemical study. Geochim. Cosmochim. Acta 48, 1373 (1984).

    Article  CAS  Google Scholar 

  26. R.A. Robie and B.S. Hemingway: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, No. 2131, Washington DC, 1995.

    Google Scholar 

  27. E.H.P. Cordfunke and R.J.M. Konings: The enthalpies of formation of lanthanide compounds III. Ln2O3 (cr). Thermochim. Acta 375, 65 (2001).

    Article  CAS  Google Scholar 

  28. D. Peck, M. Miller, D. Kobertz, H. Nickel, and K. Hilert: Vaporization of LaCrO3: Partial and integral thermodynamic properties. J. Am. Ceram. Soc. 79, 3266 (1996).

    Article  CAS  Google Scholar 

  29. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya: Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J. Electrochem. Soc. 138, 1018 (1991).

    Article  CAS  Google Scholar 

  30. M. Azad, R. Sudha, and O.M. Sreedharan: Thermodynamic stability of lanthanum chromite (LaCrO3) by a calcium fluoridebased EMF method. J. Less-Common Met. 166, 57 (1990).

    Article  CAS  Google Scholar 

  31. S. Chen, Z. Hao, F. Li, and G. Zhou: Determination of the standard free energy of formation of LaCrO3 at 1273 K. Zhongguo Xitu Xuebao 5, 19 (1987).

    CAS  Google Scholar 

  32. S. Tanasescu, N.D. Totir, and D.I. Marchidan: Thermodynamic properties of LaFeO3 studied by means of galvanic cells with solid oxide electrolyte. Mater. Res. Bull. 32, 925 (1997).

    Article  CAS  Google Scholar 

  33. O.M. Sreedharan and M.S. Chandrasekharaiah: Standard Gibbs’ energy of formation of LaFeO3 and comparison of stability of LaMO3 (M _Mn, Fe, Co or Ni) compounds. J. Mater. Sci. 21, 2581 (1986).

    Article  CAS  Google Scholar 

  34. T. Nakamura, G. Petzow, and L.J. Gauckler: Stability of the perovskite phase LaBO3 (B _V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Mater. Res. Bull. 14, 649 (1979).

    Article  CAS  Google Scholar 

  35. T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, and N. Kimizuka: Thermodynamic properties of Fe-lanthanoid–O compounds at high temperatures. J. Solid State Chem. 23, 43 (1978).

    Article  CAS  Google Scholar 

  36. Y.D. Tretyakov, A.R. Kaul, and V.K. Portnoy: Formation of rare earth and yttrium orthoferrites: A thermodynamic study. High Temp. Sci. 9, 61 (1977).

    CAS  Google Scholar 

  37. N. Kimizuka and T. Katsura: The standard free energy of the formation of LaFeO3 at 1204 °C. Bull. Chem. Soc. Jpn. 47, 1801 (1974).

    Article  CAS  Google Scholar 

  38. S.C. Parida, Z. Singh, S. Dash, R. Prasad, and V. Venugopal: Thermodynamic studies on LaFeO3 (s). J. Alloys Compd. 280, 94 (1998).

    Article  CAS  Google Scholar 

  39. S. Stolen, F. Gronvold, H. Rinks, T. Atake, and H. Mori: Heat J. Cheng et al.: Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni) J. Mater. Res., Vol. 20, No. 1, Jan 2005 199 capacity and thermodynamic properties of LaFeO3 and LaCoO3 from T = 13 K to T = 1000 K. J. Chem. Thermodyn. 30, 365 (1998).

    Article  CAS  Google Scholar 

  40. R.A. Robie and B.S. Hemingway: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, No. 2131, Washington DC, 1979.

    Google Scholar 

  41. K. Kitayama: Thermogravimetric study of the Ln2O3-Co-CO2O3 system. J. Solid State Chem. 131, 18 (1997).

    Article  CAS  Google Scholar 

  42. O.M. Sreedharan and M.S. Chandrasekharaiah: Phase change and free energy of formation of lanthanum cobalt oxide by galvanic cell method. Mater. Res. Bull. 7, 1135 (1972).

    Article  CAS  Google Scholar 

  43. H. Yokokawa, T. Kawada, and M. Dokiya: Thermodynamic regularities in perovskite and K2NiF4 compounds. J. Am. Ceram. Soc. 72, 2104 (1989).

    Article  CAS  Google Scholar 

  44. S.C. Parida, Z. Singh, S. Dash, R. Prasad, and V. Venugopal: Standard molar Gibbs energies of formation of the ternary compounds in the La-Co-O system using solid oxide galvanic cell method. J. Alloys Compd. 285, 7 (1999).

    Article  CAS  Google Scholar 

  45. S. Raghavan: Standard Gibbs energy of formation of LaNiO3 using a calcium fluoride solid electrolyte galvanic cell. Trans. Indian Inst. Met. 47, 197 (1994).

    CAS  Google Scholar 

  46. O.M. Sreedharan, M.S. Chandrasekharaiah, and M.D. Karkhanavala: The free energy of formation of lanthanum nickelate. High Tem. Sci. 8, 179 (1976).

    CAS  Google Scholar 

  47. E. Takayama-Muromachi and A. Navrotsky: Energetics of compounds (A2+B4+O3) with the perovskite structure. J. Solid State Chem. 72, 244 (1988).

    Article  CAS  Google Scholar 

  48. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A3 2, 751 (1976).

    Article  Google Scholar 

  49. L. Rormark, S. Stolen, K. Wiik, and T. Grande: Enthalpies of formation of La1-xAxMnO3±δ(A = Ca and Sr) measured by hightemperature solution calorimetry. J. Solid State Chem. 163, 186 (2002).

    Article  CAS  Google Scholar 

  50. Wachowski, Zielinski, and A. Burewicz: Preparation, stability and oxygen stoichiometry in perovskite-type binary oxides. Acta Chim. Acad. Sci. Hung. 106, 217 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Navrotsky, A., Zhou, XD. et al. Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni). Journal of Materials Research 20, 191–200 (2005). https://doi.org/10.1557/JMR.2005.0018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0018

Navigation