Skip to main content
Log in

Analysis of the spherical indentation cycle for elastic-perfectly plastic solids

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A finite element analysis of frictionless indentation of an elastic-plastic half-space by a rigid sphere is presented and the deformation behavior during loading and unloading is examined in terms of the interference and elastic—plastic material properties. The analysis yields dimensionless constitutive relationships for the normal load, contact area, and mean contact pressure during loading for a wide range of material properties and interference ranging from the inception of yielding to the initiation of fully plastic deformation. The boundaries between elastic, elastic-plastic, and fully plastic deformation regimes are determined in terms of the interference, mean contact pressure, and reduced elastic modulus-to-yield strength ratio. Relationships for the hardness and associated interference versus elastic-plastic material properties and truncated contact radius are introduced, and the shape of the plastic zone and maximum equivalent plastic strain are interpreted in light of finite element results. The unloading response is examined to evaluate the validity of basic assumptions in traditional indentation approaches used to measure the hardness and reduced elastic modulus of materials. It is shown that knowledge of the deformation behavior under both loading and unloading conditions is essential for accurate determination of the true hardness and reduced elastic modulus. An iterative approach for determining the reduced elastic modulus, yield strength, and hardness from indentation experiments and finite element solutions is proposed as an alternative to the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Vu-Quoc, X. Zhang, and L. Lesburg: A normal forcedisplacement model for contacting spheres accounting for plastic deformation: Force-driven formulation. J. Appl. Mech. 67, 363 (2000).

    CAS  Google Scholar 

  2. K. Komvopoulos and N. Ye: Three-dimensional contact analysis of elastic–plastic layered media with fractal surface topographies. J. Tribol. 123, 632 (2001).

    Google Scholar 

  3. K. Komvopoulos and W. Yan: Three-dimensional elastic–plastic fractal analysis of surface adhesion in microelectromechanical systems. J. Tribol. 120, 808 (1998).

    CAS  Google Scholar 

  4. W.R. Chang, I. Etsion, and D.B. Bogy: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110, 57 (1988).

    Google Scholar 

  5. P. Sahoo and S.K. Roy Chowdhury: A fractal analysis of adhesive friction between rough solids in gentle sliding. Proc. Inst. Mech. Engrs. J. 214, 583 (2000).

    Google Scholar 

  6. B. Bhushan: Contact mechanics of rough surfaces in tribology: Single asperity contact. J. Appl. Mech. Rev. 49, 275 (1996).

    Google Scholar 

  7. B. Bhushan: Contact mechanics of rough surfaces in tribology: Multiple asperity contact. Tribol. Lett. 4, 1 (1998).

    Google Scholar 

  8. G. Liu, Q. Wang, and C. Lin: A survey of current models for simulating the contact between rough surfaces. Tribol. Trans. 42, 581 (1999).

    CAS  Google Scholar 

  9. G.G. Adams and M. Nosonovsky: Contact modeling–Forces. Tribol. Int. 33, 431 (2000).

    Google Scholar 

  10. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).

    Google Scholar 

  11. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001).

    Google Scholar 

  12. N. Huber, A. Konstantinidis, and C. Tsakmakis: Determination of Poisson’s ratio by spherical indentation using neural networks–Part I: Theory. J. Appl. Mech. 68, 218 (2001).

    Google Scholar 

  13. A. Nayebi, R. El Abdi, O. Bartier, and G. Mauvoisin: New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34, 243 (2002).

    Google Scholar 

  14. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  15. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985), pp. 90–95 and 170–184.

    Google Scholar 

  16. R. Hill, B. Storåkers, and A.B. Zdunek: A theoretical study of the Brinell hardness test. Proc. R. Soc., London Ser. A 423, 301 (1989).

    CAS  Google Scholar 

  17. S. Biwa and B. Storåkers: An analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids 43, 1303 (1995).

    Google Scholar 

  18. A.C. Fischer-Cripps: Elastic–plastic behavior in materials loaded with a spherical indenter. J. Mater. Sci. 32, 727 (1997).

    CAS  Google Scholar 

  19. C. Hardy, C.N. Baronet, and G.V. Tordion: The elasto-plastic indentation of a half-space by a rigid sphere. Int. J. Numer. Meth. Eng. 3, 451 (1971).

    Google Scholar 

  20. P.S. Follansbee and G.B. Sinclair: Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere. Part 1: Analysis. Int. J. Solids Struct. 20, 81 (1984).

    Google Scholar 

  21. E.R. Kral, K. Komvopoulos, and D.B. Bogy: Elastic–plastic finite element analysis of repeated indentation of a half-space by a rigid sphere. J. Appl. Mech. 60, 829 (1993).

    Google Scholar 

  22. A.E. Giannakopoulos: Strength analysis of spherical indentation of piezoelectric materials. J. Appl. Mech. 67, 409 (2000).

    CAS  Google Scholar 

  23. S. Kucharski and Z. Mroz: Identification of plastic hardening parameters of metals from spherical indentation tests. Mater. Sci. Eng. A 318, 65 (2001).

    Google Scholar 

  24. S.D. Mesarovic and N.A. Fleck: Spherical indentation of elastic–plastic solids. Proc. R. Soc., London Ser. A 455, 2707 (1999).

    Google Scholar 

  25. N. Ye and K. Komvopoulos: Indentation analysis of elastic–plastic homogeneous and layered media: Criteria for determining the real material hardness. J. Tribol. 125, 685 (2003).

    Google Scholar 

  26. K.L. Johnson: Correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Google Scholar 

  27. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Google Scholar 

  28. J. Thurn, D.J. Morris, and R.F. Cook: Depth-sensing indentation at macroscopic dimensions. J. Mater. Res. 17, 2679 (2002).

    CAS  Google Scholar 

  29. D.M. Marsh: Plastic flow in glass. Proc. R. Soc., London Ser. A 279, 420 (1964).

    Google Scholar 

  30. M.M. Chaudhri: Strain hardening around spherical indentations. Phys. Status Solidi A 182, 641 (2000).

    CAS  Google Scholar 

  31. S.D. Mesarovic and K.L. Johnson: Adhesive contact of elastic–plastic spheres. J. Mech. Phys. Solids 48, 2009 (2000).

    Google Scholar 

  32. Y.J. Park and G.M. Pharr: Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic–plastic transition regime. Thin Solid Films 447, 246 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogut, L., Komvopoulos, K. Analysis of the spherical indentation cycle for elastic-perfectly plastic solids. Journal of Materials Research 19, 3641–3653 (2004). https://doi.org/10.1557/JMR.2004.0468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0468

Navigation