Skip to main content
Log in

Raman spectroscopy studies on the thermal stability of TiN, crN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

About 1.5-μm-thick single-layer TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings were deposited on silicon (111) substrates using a reactive direct current magnetron sputtering process. Structural characterization of the coatings was done using x-ray diffraction (XRD) and micro-Raman spectroscopy. All the coatings exhibited NaCl B1 structure in the XRD data. Raman spectroscopy data of as-deposited coatings exhibited two broad bands centered at 230–250 and 540–630 cm−1. These bands have been assigned to acoustical and optical phonon modes, respectively. Thermal stability of the coatings was studied by heating the coatings in air in a resistive furnace for 30 min in the temperature range 400–900 °C. Structural changes as a result of heating were characterized using Raman spectroscopy and XRD. Raman data showed that TiN, CrN, TiN/CrN, TiAlN, and TiAlN/CrN coatings started to oxidize at 500, 600, 750, 800, and 900 °C, respectively. To isolate the oxidation-induced spectral changes as a result of heating of the coatings in air, samples were also annealed in vacuum at 800 °C under similar conditions. The Raman data of vacuum-annealed coatings showed no phase transformation, and intensity of the optical phonon mode increased and shifted to lower frequencies. The origin of these spectral changes is discussed in terms of defect structure of the coatings. Our results indicate that the thermal stability of nanolayered multilayer coatings is superior to the single-layer coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Munz: Titanium aluminium nitride films: A new alternative to TiN coatings. J. Vac. Sci. Technol. A 4, 2717 (1986).

    Article  Google Scholar 

  2. H.C. Barshilia and K.S. Rajam: Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol. 155, 195 (2002).

    Article  CAS  Google Scholar 

  3. H.C. Barshilia and K.S. Rajam: Deposition of TiN/CrN hard superlattices by reactive DC magnetron sputtering. Bull. Mater. Sci. 26, 233 (2003).

    Article  CAS  Google Scholar 

  4. H.C. Barshilia, A. Jain, and K.S. Rajam: Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 72/73, 241 (2004).

    Google Scholar 

  5. H.C. Barshilia and K.S. Rajam: Structure and properties of reactive DC magnetron sputtered TiN/NbN hard superlattices. Surf. Coat. Technol. 183, 174 (2004).

    Article  CAS  Google Scholar 

  6. H.C. Barshilia, M.S. Prakash, A. Poojari, and K.S. Rajam: Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive DC magnetron sputtering process. Thin Solid Films 460, 133 (2004).

    Article  CAS  Google Scholar 

  7. P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, and I. Milosev: Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature. Thin Solid Films 281–282, 298 (1996).

    Article  Google Scholar 

  8. H. Ichimura and A. Kawana: High-temperature oxidation of ionplated TiN and TiAlN films. J. Mater. Res. 8, 1093 (1993).

    Article  CAS  Google Scholar 

  9. M. Franck, J-P. Celis, and J.R. Roos: Microprobe Raman spectroscopy of TiN coatings oxidized by solar beam heat treatment. J. Mater. Res. 10, 119 (1995).

    Article  CAS  Google Scholar 

  10. P.H. Mayrhofer, H. Willmann, and C. Mitterer: Oxidation kinetics of sputtered Cr-N coatings. Surf. Coat. Technol. 146–147, 222 (2001).

    Article  Google Scholar 

  11. Jui-Neng Tu, Jenq-Gong Duh, and Shu-Yueh. Tsai: Morphology, mechanical properties, and oxidation behavior of reactively sputtered Cr-N films. Surf. Coat. Technol. 133–134, 181 (2000).

    Article  Google Scholar 

  12. H. Ichimura and A. Kawana: High temperature oxidation of ionplated CrN films. J. Mater. Res. 9, 151 (1994).

    Article  CAS  Google Scholar 

  13. D. McIntyre, J.E. Greene, G. Hakansson, J.E. Sundgren, and W.D. Munz: Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J. Appl. Phys. 67, 1542 (1990).

    Article  CAS  Google Scholar 

  14. P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, and J. Vlcek: High temperature oxidation of TiN/CrN multilayers reactively sputtered at low temperatures. Surf. Coat. Technol. 98, 1497 (1998).

    Article  CAS  Google Scholar 

  15. I. Wadsworth, I.J. Smith, L.A. Donohue, and W.D. Munz: Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings. Surf. Coat. Technol. 94–95, 315 (1997).

    Article  Google Scholar 

  16. H.C. Barshilia, M.S. Prakash, A. Jain, and K.S. Rajam: Structure, hardness and thermal stability of TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings. Vacuum (in press).

  17. W. Spengler and R. Kaiser: First and second order Raman scattering in transition metal compounds. Solid State Commun. 18, 881 (1976).

    Article  CAS  Google Scholar 

  18. E. Vancoille, B. Blanpain, Y. Xingpu, J.P. Celis, and J.R. Roos: Tribo-oxidation of a TiN coating sliding against corundum. J. Mater. Res. 9, 992 (1994).

    Article  CAS  Google Scholar 

  19. N. Muraki, V. Sergo, G. Pezzotti, G. Katagiri, S. Meriani, and T. Nishida: Raman piezo-spectroscopic behavior of aluminum nitride. Appl. Spectro. 51, 1761 (1997).

    Article  CAS  Google Scholar 

  20. R. Chowdhury, R.D. Vispute, K. Jagannadham, and J. Narayan: Characteristics of titanium nitride films grown by pulsed laser deposition. J. Mater. Res. 11, 1458 (1996).

    Article  CAS  Google Scholar 

  21. A. Barata, L. Cunha, and C. Moura: Characterization of chromium nitride films produced by PVD techniques. Thin Solid Films 398–399, 501 (2001).

    Article  Google Scholar 

  22. M. Bernard, A. Deneuville, O. Thomas, P. Gergaud, P. Sandstrom, and J. Birch: Raman spectra of TiN/AlN superlattices. Thin Solid Films 380, 252 (2000).

    Article  CAS  Google Scholar 

  23. J.C. Parker and R.W. Siegel: Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J. Mater. Res. 5, 1246 (1990).

    Article  CAS  Google Scholar 

  24. A. Misra, H.D. Bist, M.S. Navati, R.K. Thareja, and J. Narayan: Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study. Mater. Sci. Eng. B 79, 49 (2001).

    Article  Google Scholar 

  25. W. Spengler, R. Kaiser, A.N. Christensen, and G. Muller-Vogt: Raman scattering, superconductivity and phonon density of states of stoichiometric and non-stoichiometric TiN. Phys. Rev. B 17, 1095 (1978).

    Article  CAS  Google Scholar 

  26. C.P. Constable, J. Yarwood, and W.D. Munz: Raman microscopic studies of PVD hard coatings. Surf. Coat. Technol. 116–119, 155 (1999).

    Article  Google Scholar 

  27. L. Hultman: Thermal stability of nitride thin films. Vacuum 57, 1 (2000).

    Article  CAS  Google Scholar 

  28. I. Kosacki, T. Suzuki, H.U. Anderson, and P. Colomban: Raman scattering and lattice defets in nanocrystalline CeO2 thin films. Solid State Ionics 149, 99 (2002).

    Article  CAS  Google Scholar 

  29. C.P. Constable, D.B. Lewis, J. Yarwood, and W.D. Munz: Raman microscopic studies of residual and applied stress in PVD hard ceramic coatings and correlation with x-ray diffraction (XRD) measurements. Surf. Coat. Technol. 184, 291 (2004).

    Article  CAS  Google Scholar 

  30. I. Petrov, L. Hultman, U. Helmersson, J-E. Sundgren, and J.E. Greene: Microstructure modification of TiN by ion bombardment during reactive sputter deposition. Thin Solid Films 169, 299 (1989).

    Article  CAS  Google Scholar 

  31. H. Ljungcrantz, L. Hultman, J.E. Sundgren, and L. Karlsson: Ion induced stress generation in arc-evaporated TiN films. J. Appl. Phys. 78, 832 (1995).

    Article  CAS  Google Scholar 

  32. L. Hultman, U. Helmersson, S.A. Barnett, J-E. Sundgren, and J.E. Greene: Low-energy ion irradiation during film growth for reducing defect densities in epitaxial TiN (100) films deposited by reactive-magnetron sputtering. J. Appl. Phys. 61, 552 (1987).

    Article  CAS  Google Scholar 

  33. M. Fujii, S. Hayashi, and K. Yamamoto: Raman scattering from quantum dots of Ge embedded in SiO2 thin films. Appl. Phys. Lett. 57, 2692 (1990).

    Article  CAS  Google Scholar 

  34. Y. Tanaka, T.M. Gur, M. Kelly, S.B. Hagstrom, T. Ikeda, K. Wakihira, and H. Satoh: Properties of (Ti1-xAlx)N coatings for cutting tools prepared by the cathodic arc ion plating method. J. Vac. Sci. Technol. A 10, 1749 (1992).

    Article  CAS  Google Scholar 

  35. R.A. Andrievski, I.A. Anisimova, V.P. Anisimov, V.P. Makarov, and V.P. Popova: Grain size and recrystallization of TiN, ZrN, NbN, and CrN alloyed and multilayer films. Thin Solid Films 261, 83 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish C. Barshilia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barshilia, H.C., Rajam, K.S. Raman spectroscopy studies on the thermal stability of TiN, crN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. Journal of Materials Research 19, 3196–3205 (2004). https://doi.org/10.1557/JMR.2004.0444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0444

Navigation