Skip to main content
Log in

Wet chemical synthesis and luminescence properties of erbium-doped nanocrystalline yttrium oxide

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The luminescence properties of nanocrystalline Y2O3:Er3+ prepared via wet chemical synthesis were investigated. A broadening of both the reflectance spectrum and 77 K luminescence spectrum (γexc = 488 nm) was observed in the nanocrystalline material compared to bulk Y2O3:Erp3+. The spectral broadening was attributed to the presence of Er3+ ions on the surface of the particle, which experienced different crystal fields than the ions buried in the core of the particle. Upconversion was observed in both the bulk and nanocrystal material following excitation with 650-nm or 800-nm radiation. Following excitation with 800-nm radiation, an enhancement of the red (4F9/24I15/2) upconverted emission was observed and occurred as a result of the (4I9/2, 4I11/2) ? (4I13/2, 4F9/2) ion-pair process that directly populated the 4F9/2 state. The magnitude of the red enhancement in the nanocrystalline material prepared via wet chemical synthesis was less than that of the identically doped bulk sample and less still than Y2O3:Er3+ nanocrystals prepared via a combustion synthesis technique. An explanation is proposed to account for the drastic difference in the red upconverted luminescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Igarashi, M. Ihara, T. Kusunoki, and K. Ohno: Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor. Appl. Phys. Lett. 76, 1549 (2000).

    Article  CAS  Google Scholar 

  2. C. Xu, B.A.Watkins, R.E. Sievers, X. Jing, P. Trowga, C.S. Gibbons, and A. Vecht: Submicron-sized spherical yttium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis. Appl. Phys. Lett. 71, 1643 (1997).

    Article  CAS  Google Scholar 

  3. T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto: Phosphor materials for cathode-ray tubes. Adv. Electron. Electron Phys. 79, 271 (1990).

    Article  CAS  Google Scholar 

  4. Y. Shen, C.S. Friend, Y. Jiang, D. Jakubczyk, J. Swiatkiewicz, and P.N. Prasad: Nanophotonics: Interactions, materials, and applications. J. Phys. Chem. B 104, 7577 (2000).

    Article  CAS  Google Scholar 

  5. B.M. Tissue: Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 10, 2837 (1998).

    Article  CAS  Google Scholar 

  6. F. Vetrone, J.C. Boyer, and J.A. Capobianco: In Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004), p. 725.

  7. G. Wakefield, E. Holland, P.J. Dobson, and J.L. Hutchison: Luminescence properties of nanocrystalline Y2O3:Eu. Adv. Mater. 13, 1557 (2001).

    Article  CAS  Google Scholar 

  8. Y. Tao, G. Zhao, W. Zhang, and S. Xia: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).

    Article  CAS  Google Scholar 

  9. G. Tessari, M. Bettinelli, A. Speghini, D. Ajò, G. Pozza, L.E. Depero, B. Allieri, and L. Sangaletti: Synthesis and optical properties on nanosized powders: Lanthanide-doped Y2O3. Appl. Surf. Sci. 144–145, 686 (1999).

    Article  Google Scholar 

  10. P.K. Sharma, M.H. Jilavi, R. Nass, and H. Schmidt: Tailoring the particle size from _m→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J. Lumin. 82, 187 (1999).

    Article  CAS  Google Scholar 

  11. B. Allieri, L.E. Depero, A. Marino, L. Sangaletti, L. Caporaso, A. Speghini, and M. Bettinelli: Growth and microstructural analysis of nanosized Y2O3 doped with rare-earths. Mater. Chem. Phys. 66, 164 (2000).

    Article  CAS  Google Scholar 

  12. P.A. Tanner and R.W.Y. Sun: Use of preformed sols in the synthesis of luminescent lanthanide ion-doped yttria. J. Mater. Sci. 36, 2253 (2001).

    Article  CAS  Google Scholar 

  13. G. Yi, B. Sun, F. Yang, D. Chen, Y. Zhou, and J. Cheng: Synthesis and characterization of high-efficiency nanocrystal upconversion phosphors: Ytterbium and erbium codoped lanthanum molybdate. Chem. Mater. 14, 2910 (2002).

    Article  CAS  Google Scholar 

  14. H. Eilers and B.M. Tissue: Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with cw-CO2 laser heating. Mater. Lett. 24, 261 (1995).

    Article  CAS  Google Scholar 

  15. A. Konrad, T. Fries, A. Gahn, F. Kummer, U. Herr, R. Tidecks, and K. Samwer: Nanocrystalline cubic yttria: Synthesis and optical properties. Chem. Vap. Deposition 5, 207 (1999).

    Article  CAS  Google Scholar 

  16. A. Konrad, T. Fries, A. Gahn, F. Kummer, U. Herr, R. Tidecks, and K. Samwer: Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu. J. Appl. Phys. 86, 3129 (1999).

    Article  CAS  Google Scholar 

  17. R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R.A. Fischer, H. Hahn, and H. v. Seggern: Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments. Scripta Mater. 44, 1213 (2001).

    Article  CAS  Google Scholar 

  18. P.K. Sharma, R. Nass, and H. Schmidt: Effect of solvent, host precursor, dopant concentration, and crystallite size on the fluorescence properties of Eu(III) doped yttria. Opt. Mater. 10, 161 (1998).

    Article  CAS  Google Scholar 

  19. J. Wang, H. Song, B. Sun, X. Ren, B. Chen, and W. Xu: Lightinduced luminescent enhancement and structural change in cubic nanocrystalline Y2O3:Tb. Chem. Phys. Lett. 379, 507 (2003).

    Article  CAS  Google Scholar 

  20. J.A. Capobianco, J.C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli: Optical spectroscopy and upconversion studies of HO3+-doped bulk and nanocrystalline Y2O3. Chem. Mater. 14, 2915 (2002).

    Article  CAS  Google Scholar 

  21. F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, and M. Bettinelli: Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chem. Mater. 15, 2737 (2003).

    Article  CAS  Google Scholar 

  22. R. Scheps: Upconversion laser processes. Prog. Quant. Electron. 20, 271 (1996).

    Article  CAS  Google Scholar 

  23. S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini, and G. Fagherazzi: Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis. J. Mater. Chem. 12, 742 (2002).

    Article  CAS  Google Scholar 

  24. J.A. Capobianco, F. Vetrone, T. D’Alesio, G. Tessari, A. Speghini, and M. Bettinelli: Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis. Phys. Chem. Chem. Phys. 2, 3203 (2000).

    Article  CAS  Google Scholar 

  25. A. Konrad, T. Fries, A. Gahn, F. Kummer, U. Herr, R. Tidecks, and K. Samwer: Shift of the absorption spectra of undoped and rare earth doped nanocrystalline yttria prepared by chemical vapor synthesis. Mater. Sci. Forum 343–346, 494 (2000).

    Article  Google Scholar 

  26. A. Konrad, U. Herr, R. Tidecks, F. Kummer, and K. Samwer: Luminescence of bulk and nanocrystalline cubic yttria. J. Appl. Phys. 90, 3516 (2001).

    Article  CAS  Google Scholar 

  27. N. Yamada, S. Shionoya, and T. Kushida: Phonon-assisted energy transfer between trivalent rare earth ions. J. Phys. Soc. Jpn. 32, 1577 (1972).

    Article  CAS  Google Scholar 

  28. E. Nakazawa: In Phosphor Handbook, edited by S. Shionoya and W.M. Yen (CRC Press, Boca Raton, 1999).

  29. M.J. Weber: Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys. Rev. 157, 262 (1967).

    Article  CAS  Google Scholar 

  30. M.A. Chamarro and R. Cases: Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses. J. Lumin. 42, 267 (1988).

    Article  CAS  Google Scholar 

  31. M.F. Joubert: Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 11, 181 (1999).

    Article  CAS  Google Scholar 

  32. J.A. Capobianco, N. Raspa, A. Monteil, and M. Malinowski: Energy transfer upconversion in Gd3Ga5O12:Pr3+. J. Phys.: Condens. Matter 5, 6083 (1993).

    CAS  Google Scholar 

  33. J.A. Capobianco, F. Vetrone, J.C. Boyer, A. Speghini, and M. Bettinelli: Enhancement of red emission (4F9/24I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. J. Phys. Chem. B 106, 1181 (2002).

    Article  CAS  Google Scholar 

  34. X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo: Concentration dependence of visible up-conversion luminescence in the laser crystal Gd3Ga5O12 doped with erbium. J. Lumin. 85, 295 (2000).

    Article  CAS  Google Scholar 

  35. S. Polizzi, G. Fagherazzi, M. Battagliarin, M. Bettinelli, and A. Speghini: Fractal aggregates of lanthanide-doped Y2O3 nanoparticles obtained by propellant synthesis. J. Mater. Res. 16, 146 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Capobianco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrone, F., Boyer, JC., Capobianco, J.A. et al. Wet chemical synthesis and luminescence properties of erbium-doped nanocrystalline yttrium oxide. Journal of Materials Research 19, 3398–3407 (2004). https://doi.org/10.1557/JMR.2004.0438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0438

Navigation