Skip to main content
Log in

Growth of (100) oriented diamond grains by the application of lateral temperature gradients across silicon substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polycrystalline diamond films with a predominant (100) texture were deposited onto silicon substrates using hot-filament chemical vapor deposition. During film deposition, different temperature gradients were created and imposed laterally across the substrate materials. Films grown under a gradient of 100 °C cm-1 displayed large (100) oriented grains. No crystallite (100) orientation was observed in the as-grown films prepared without a temperature gradient. It was observed that the diamond grain size varied as a function of the gradient. The lower gradient resulted in smaller grains and vice versa. Furthermore, the size of the grains was a function of the deposition time. The orientation of the diamond grains changed gradually across the substrate from (100) to (110) orientation as we scanned from the high-temperature to the low-temperature zone. The films were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy. XRD showed strong (400) reflections in the oriented samples. SEM results indicated the presence of smooth diamond surfaces consisting of predominantly (100) oriented platelets. As the (100) oriented diamond grains were grown on top of the (100) oriented silicon substrates, the faces were mostly aligned parallel to the substrate surface resulting in the deposition of a smooth diamond surface. AFM observations revealed the presence of steps located at the boundaries of the oriented grains. FTIR results showed the characteristic difference in hydrogen bonding in the oriented samples and gave useful information about mechanisms responsible for the orientation. Quantitative analysis was carried out to measure the H content in the films, and it was found that the oriented films contained less hydrogen. Our findings suggest that high saturation of carbon and a concentration gradient of sp3 CH2 species can be the key factor in the oriented growth of (100) diamond grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Demuynck, J.C. Arnault, C. Speisser, R. Polini, and F. Le Normand: Mechanisms of CVD diamond nucleation and growth on mechanically scratched and virgin Si(100) surfaces. Diamond Relat. Mater. 6, 235 (1997).

    Article  CAS  Google Scholar 

  2. I.U. Hassan, C.A. Rego, N. Ali, W. Ahmed, and I.P. O’Hare: An investigation of the structural properties of diamond films deposited by pulsed bias enhanced hot filament CVD. Thin Solid Films 355, 134 (1999).

    Article  Google Scholar 

  3. P.N. Barnes and R.L.C. Wu: Nucleation enhancement of diamond with amorphous films. Appl. Phys. Lett. 62, 37 (1993).

    Article  CAS  Google Scholar 

  4. S. Yugo, T. Kanai, T. Kimura, and T. Muto: Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Appl. Phys. Lett. 58, 1036 (1991).

    Article  CAS  Google Scholar 

  5. X. Jiang, X.W. Su, Q.J. Chen, and Z.D. Lin: Si implantation: A pretreatment method for diamond nucleation on a Si wafer. Appl. Phys. Lett. 66, 3284 (1995).

    Article  CAS  Google Scholar 

  6. X. Jiang, C.P. Klages, R. Zachai, M. Hartweg, and H.J. Fusser: Epitaxial diamond thin films on (001) silicon substrates. Appl. Phys. Lett. 62, 3438 (1993).

    Article  CAS  Google Scholar 

  7. X. Jiang, M. Fryda, and C.L. Jia: High quality heteroepitaxial diamond films on silicon. Recent progresses. Diamond Relat. Mater. 9, 1640 (2000).

    Article  CAS  Google Scholar 

  8. S.D. Wolter, B.R. Stoner, and J.T. Glass: Textured growth of diamond on silicon via in situ carburization and bias-enhanced nucleation. Appl. Phys. Lett. 62, 1215 (1993).

    Article  CAS  Google Scholar 

  9. Q. Chen, J. Yang, and Z. Lin: Synthesis of oriented textured diamond films on silicon via hot filament chemical vapor deposition. Appl. Phys. Lett. 67, 1853 (1995).

    Article  CAS  Google Scholar 

  10. C. Wild, P. Koildl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn: Chemical vapour deposition and characterization of smooth 100-faceted diamond films. Diamond Relat. Mater. 2, 158 (1993).

    Article  CAS  Google Scholar 

  11. X. Li, Y. Hayashi, and S. Nishino: In-situ ellipsometry study of initial stage of bias-enhanced nucleation and heteroepitaxy of diamond on silicon(100) by hot filament chemical vapor deposition. Diamond Relat. Mater. 6, 1117 (1997).

    Article  CAS  Google Scholar 

  12. S. Yugo, N. Nakamura, and T. Kimura: Analysis of heteroepitaxial mechanism of diamond grown by chemical vapor deposition. Diamond Relat. Mater. 7, 1017 (1998).

    Article  CAS  Google Scholar 

  13. M. Nishitani-Gamo, T. Ando, and K. Watanabe: A nondiamond phase at the interface between oriented diamond and Si(100) observed by confocal Raman spectroscopy. Appl. Phys. Lett. 70, 1530 (1997).

    Article  CAS  Google Scholar 

  14. M. Nishitani-Gamo, T. Ando, and K. Watanabe: Interfacial structures of oriented diamond on Si(100) characterized by confocal Raman spectroscopy. Diamond Relat. Mater. 6, 1036 (1997).

    Article  Google Scholar 

  15. J. Plitzko, M. Rosler, and K.G. Nickel: Heteroepitaxial growth of diamond thin films on silicon. Diamond Relat. Mater. 6, 935 (1997).

    Article  CAS  Google Scholar 

  16. S. Saada, S. Barrat, and E. Bauer-Grosse: Towards homogeneous and reproducible highly oriented diamond films. Diamond Relat. Mater. 9, 300 (2000).

    Article  CAS  Google Scholar 

  17. T. Sharda, D.S. Misra, and D.K. Avasthi: Hydrogen in chemical vapour deposited diamond films. Vacuum 47, 1259 (1996).

    Article  CAS  Google Scholar 

  18. B. Sun, X. Zhang, Q. Zhang, and Z. Lin: Growth mechanism and the order of appearance of diamond (111) and (100) facets. Phys. Rev. B 47, 9816 (1993).

    Article  CAS  Google Scholar 

  19. S.J. Harris: Mechanism for diamond growth from methyl radicals. Appl. Phys. Lett. 56, 2298 (1990).

    Article  CAS  Google Scholar 

  20. S.T. Lee and G.A. Pai: Surface phonons and CH vibrational modes of diamond (100) and (111) surfaces. Phys. Rev. B 48, 2684 (1993).

    Article  CAS  Google Scholar 

  21. T. Ando, T. Aizawa, K. Yamamoto, Y. Sato, and M. Kamo: The chemisorption of hydrogen on diamond surfaces studied by high resolution electron energy-loss spectroscopy. Diamond Relat. Mater. 3, 245 (1999).

    Google Scholar 

  22. J.A. Chaney and C.S. Feigerle: Characterization of chlorinated chemical vapor deposited and natural (100) diamond. Surf. Sci. 425, 245 (1999).

    Article  CAS  Google Scholar 

  23. K.M. MacNamara, B.E. Williams, K.K. Gleason, and B.E. Scruggs: Identification of defects and impurities in chemicalvapor- deposited diamond through infrared spectroscopy. J. Appl. Phys. 76, 2466 (1994).

    Article  Google Scholar 

  24. W. Jacob and M. Unger: Experimental determination of the absorption strength of C–H vibrations for infrared analysis of hydrogenated carbon films. Appl. Phys. Lett. 68, 475 (1996).

    Article  CAS  Google Scholar 

  25. W.J. Zhang and X. Jiang: The contribution of H+ ion etching during the initial deposition stage to the orientation grade of diamond films. Thin Solid Films 348, 84 (1999).

    Article  CAS  Google Scholar 

  26. D. Wittorf, W. Jager, K. Urban, T. Gutheit, H. Guttler, G. Schulz, and R. Zachai: Microstructure and growth of MWCVD diamond on Si1−xCx buffer layers. Diamond Relat. Mater. 6, 649 (1997).

    Article  CAS  Google Scholar 

  27. M. Stammler, R. Stockel, L. Ley, M. Albercht, and H.P. Strunk: Diamond nucleation on silicon during bias treatment in chemical vapour deposition as analysed by electron microscopy. Diamond Relat. Mater. 6, 747 (1997).

    Article  CAS  Google Scholar 

  28. X. Jiang and C.L. Jia: Diamond epitaxy on (001) silicon: An interface investigation. Appl. Phys. Lett. 67, 1197 (1995).

    Article  CAS  Google Scholar 

  29. M. Nesladek, K. Meykens, K. Haenen, J. Navratil, and C. Quaeyhaegens: Characteristic defects in CVD diamond: Optical and electron paramagnetic resonance study. Diamond Relat. Mater. 8, 1480 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Titus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titus, E., Misra, D.S., Singh, M.K. et al. Growth of (100) oriented diamond grains by the application of lateral temperature gradients across silicon substrates. Journal of Materials Research 19, 3206–3213 (2004). https://doi.org/10.1557/JMR.2004.0433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0433

Navigation