Skip to main content
Log in

Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dense fully stabilized cubic zirconia, sintered by the spark plasma sintering (SPS) method, was characterized through hardness, fracture toughness, and electrical impedance measurements. The effect of sintering temperature on hardness and fracture toughness was evaluated. Samples sintered at 1200 °C for 5 min, which had crystallite size of <100 nm, exhibited the highest hardness. Impedance measurements showed an increase in bulk contribution relative to grain boundaries as sintering temperature is increased. Calculation of the activation energy for conduction gave a value, 1.13 eV, in agreement with previously published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Anselmi-Tamburini, J. Garay, Z.A. Munir, A. Tacca, F. Maglia, and G. Spinolo: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 3255 (2004).

    Article  CAS  Google Scholar 

  2. W. Li and L. Gao: Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. J. Eur. Ceram. Soc. 20, 2441 (2000).

    Article  CAS  Google Scholar 

  3. L.G. Yu, K.A. Khor, S.H. Chan, and X.J. Chen: In Processing and Fabrication of Advanced Materials X, Proceedings of the Tenth International Symposium on Processing and Fabrication of Advanced Materials, Indianapolis, IN, Nov. 5–8, 2001 (ASM International, Warrendale, PA, 2001), p. 33

    Google Scholar 

  4. T. Takeuchi, I. Kondoh, N. Tamari, N. Balakrishnan, K. Nomura, H. Kageyama, and Y. Takeda: Improvement of mechanical strength of 8 mol% yttria-stabalized zirconia ceramics by spark plasma sintreing. J. Electrochem. Soc. 149, A455 (2002).

    Article  Google Scholar 

  5. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu: Preparation yttriastablized zirconia electrolyte by spark plasma sintering. Mater. Sci. Eng. A 341, 43 (2003).

    Article  Google Scholar 

  6. K. Niihara, R. Morena, and D.P.H. Hasselman: Evaluation of KIC of brittle solids by the indentation method with low crack-toindent ratios. J. Mater. Sci. Lett. 1, 13 (1982).

    Article  CAS  Google Scholar 

  7. M. Barsoum: Fundamentals of Ceramics (McGraw-Hill, New York, 1997), p. 401.

    Google Scholar 

  8. B.A. Cottom and M.J. Mayo: Fracture toughness of nanocrystalline ZrO2-3 mol% Y2O3 determined by Vickers indentation. Scripta Mater. 34, 809 (1996).

    Article  CAS  Google Scholar 

  9. A. Bravo-Leon, Y. Morikawa, M. Kawahara, and M.J. Mayo: Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 50, 4555 (2002).

    Article  Google Scholar 

  10. G.R. Anstis, P. Chantikul, B.R. Lawn, and D. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Amer. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  11. G. Chiodelli and P. Lupotto: Experimental approach to the impedance spectroscopy technique. J. Electrochem. Soc. 138, 2703 (1991).

    Article  CAS  Google Scholar 

  12. B. Hwang, C.R. Houska, G.E. Ice, and A. Habenschuss: Residual strain gradients in a fully stabilized zirconia sample. J. Appl. Phys. 63, 5351 (1988).

    Article  CAS  Google Scholar 

  13. Y. Kitano, Y. Mori, A. Ishitani, and T. Masaki: Structural changes by mechanical and thermal stresses of 2.5-mol%-Y2O3-stabilized tetragonal ZrO2 polycrystals. J. Am. Ceram. Soc. 71, C382 (1988).

    Google Scholar 

  14. A. Kitamura, S. Kubodera, H. Yamamoto, A. Miyamoto, and T. Tsukui: In Hot-Isostatic Pressing: Theory and Application, edited by M. Koizumi (Elsevier, London, U.K., 1992), p. 171.

  15. G.A. Gototsi, E.E. Lamonova, Y.A. Furmanov, and I.M. Savitskaya: Zirconia crystals suitable for medicine 1. Implants. Ceram. Int. 20, 343 (1994).

    Article  Google Scholar 

  16. N.H. Kwon, G.H. Kim, H.S. Song, and H.L. Lee: Synthesis and properties of cubic zirconia-alumina composites by mechanical alloying. Mater. Sci. Eng. A 299, 185 (2001).

    Article  Google Scholar 

  17. I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine: Sinterablity of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density in the ionic conductivity. J. Mater. Sci. 33, 4297 (1998).

    Article  CAS  Google Scholar 

  18. F.T. Ciacchi, S.A. Nightingale, and S.P.S. Badwal: Microwave sintering of zirconia-yttria electrolytes and measurements of their ionic conductivity. Solid State Ionics 86–88, 1167 (1996).

    Article  Google Scholar 

  19. D.Z. de Florio and R. Muccillo: Sintering of zirconia-yttria ceramics studied by impedance spectroscopy. Solid State Ionics 123, 301 (1999).

    Article  Google Scholar 

  20. S.P.S. Badwal and J. Drennan: The effect of thermal history on the grain boundary resistivity of Y-TZP materials. Solid State Ionics 28–30, 1451 (1988).

    Article  Google Scholar 

  21. M. Aoki, Y.M. Chiang, I. Kosacki, J.R. Lee, H. Tuller, and Y. Liu: Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J. Am. Ceram. Soc. 79, 1169 (1996).

    Article  CAS  Google Scholar 

  22. X. Guo: Size dependent grain-boundary conductivity in doped zironia. Comput. Mater. Sci. 20, 168 (2001).

    Article  CAS  Google Scholar 

  23. S.H. Risbud and J.R. Groza: Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process. Philos. Mag. B 69, 525 (1994).

    Article  CAS  Google Scholar 

  24. G. Chiodelli, A. Magistris, M. Scagliotti, and F. Parmigiani: Electrical properties of plasma-sprayed yttria-stabilized zirconia films. J. Mater. Sci. 23, 1159 (1988).

    Article  CAS  Google Scholar 

  25. S.P.S. Badwal: Zirconia-based solid electrolytes: Microstructure, stability and ionic conductivity. Solid State Ionics 52, 23 (1992).

    Article  CAS  Google Scholar 

  26. M. Martin and M.L. Mecartney: Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics 161, 67 (2003).

    Article  CAS  Google Scholar 

  27. I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine: Influence of yttria concentration upon electrical properties and susceptibility to ageing of yttria-stabilized zirconias. J. Eur. Ceram. Soc. 18, 661 (1998).

    Article  CAS  Google Scholar 

  28. X. Guo and J. Maier: Grain boundary blocking effect in zirconia: A Schottky barrier analysis. J. Electrochem. Soc. 148, E121 (2001).

    Article  CAS  Google Scholar 

  29. X. Guo and Z. Zhang: Grain size dependent grain boundary defect structure: Case of doped zirconia. Acta Mater. 51, 2539 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Munir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A. et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies. Journal of Materials Research 19, 3263–3269 (2004). https://doi.org/10.1557/JMR.2004.0424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0424

Navigation