Skip to main content
Log in

Electrical technique for monitoring crack growth in thin-film fracture mechanics specimens

  • Rapid Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An accurate and reliable electrical technique for continuous monitoring of crack growth in fracture specimens containing technologically relevant thin-film device structures has been developed. Both adhesive and cohesive crack growth measurements are reported using a SiO2 passivation layer and a conducting titanium film deposited on the side face of fracture specimens. Crack velocity measurements approaching 10-12 m/s were achieved, representing nearly an order of magnitude improvement over commonly used compliance-based techniques. The technique may be particularly useful for elucidating near threshold crack velocity behavior, which is important for thin-film reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. Guyer and R.H. Dauskardt: Fracture of nanoporous thin-film glasses. Nat. Mater. 3, 53 (2004).

    Article  CAS  Google Scholar 

  2. J.M. Snodgrass, D. Pantelidis, M.L. Jenkins, J.C. Bravman, and R.H. Dauskardt: Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater. 50, 2395 (2002).

    Article  CAS  Google Scholar 

  3. S.Y. Kook and R.H. Dauskardt: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).

    Article  CAS  Google Scholar 

  4. R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multi-layer thin film structures. Engineering Fracture Mechanics 61, 141 (1998).

    Article  Google Scholar 

  5. R.F. Cook and E.G. Liniger: Kinetics of indentation cracking in glass. J. Am. Ceram. Soc. 76, 1096 (1993).

    Article  CAS  Google Scholar 

  6. R. Cook and E. Liniger: Stress-corrosion cracking of lowdielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146, 4439 (1999).

    Article  CAS  Google Scholar 

  7. Y. Lin, J. Vlassak, T. Tsui, and A. McKerrow: Environmental Effects on Subcritical Delamination of Dielectric and Metal Films from Organosilicate Glass (OSG) Thin Films. (Materials Research Society, Warrendale, PA, 2003).

    Book  Google Scholar 

  8. C.L. Muhlstein, E.A. Stach, and R.O. Ritchie: Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems. Appl. Phys. Lett. 80, 1532 (2002).

    Article  CAS  Google Scholar 

  9. M. Lane: Interface fracture. Annu. Rev. Mater. Res. 33, 29 (2003).

    Article  CAS  Google Scholar 

  10. M. Lane, R. Ware, S. Voss, Q. Ma, H. Fujimoto, and R.H. Dauskardt: In Materials Reliability in Microelectronics VII Symposium (Materials Research Society, San Francisco, CA, 1997).

    Google Scholar 

  11. M.W. Lane, J.M. Snodgrass, and R.H. Dauskardt: Environmental effects on interfacial adhesion. Microelectron Reliab. 41, 1615 (2001).

    Article  Google Scholar 

  12. M.F. Kanninen: Augmented double cantilever beam model for studying crack-propagation and arrest. International Journal of Fracture 9, 83 (1973).

    Google Scholar 

  13. J. Mroz, R.H. Dauskardt, and U. Schleinkofer: New adhesion measurement technique for coated cutting tool materials. Int. J. Refract. Met. Hard Mater. 16, 395 (1998).

    Article  CAS  Google Scholar 

  14. G.H. Aronson and R.O. Ritchie: Optimization of the electrical potential technique for crack growth monitoring in compact test pieces using finite element analysis. J. Test. Eval. 7, 208 (1979).

    Article  Google Scholar 

  15. G. Hartman and D. Johnson: D-C electric-potential method applied to thermal/mechanical fatigue crack growth. Experimental Mechanics 27, 106 (1987).

    Article  Google Scholar 

  16. R.H. Dauskardt, W. Yu, and R.O. Ritchie: Fatigue-crack propagation in transformation-toughened zirconia ceramic. J Am. Ceram. Soc. 70, C248 (1987).

    Article  Google Scholar 

  17. S.J. Dill, S.J. Bennison, and R.H. Dauskardt: Subcritical crackgrowth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect. J Am. Ceram. Soc. 80, 773 (1997).

    Article  CAS  Google Scholar 

  18. A.M. Fitzgerald, R.H. Dauskardt, and T.W. Kenny: Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon. Sens. Actuators A Phys. 83, 194 (2000).

    Article  CAS  Google Scholar 

  19. M.F. Kanninen: An augmented double cantilever beam model for studying crack propagation and arrest. International Journal of Fracture 9, 83 (1973).

    Google Scholar 

  20. S.M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass. J Am. Ceram. Soc. 50, 407 (1967).

    Article  CAS  Google Scholar 

  21. B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1993).

    Book  Google Scholar 

  22. M. Lane, R.H. Dauskardt, N. Krishna, and I. Hashim: Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guyer, E.P., Dauskardt, R.H. Electrical technique for monitoring crack growth in thin-film fracture mechanics specimens. Journal of Materials Research 19, 3139–3144 (2004). https://doi.org/10.1557/JMR.2004.0421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0421

Navigation