Skip to main content
Log in

Mechanochemical study of the hydriding properties of nanostructured Mg2Ni–Ni composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comprehensive approach is presented for defining hydrogen activation and absorbing kinetics in heterogeneous Mg2Ni/Ni powder composites that were subjected to mechanical refinement. Hydriding tests were performed under conventional hydrogen dissolving and under reactive milling. Irrespective of the absorbing mode, the absorption kinetics is deceleratory throughout. Under conventional thermodynamic conditions, the hydriding rate depends strongly on the microstructural features of both the absorbing Mg2Ni intermetallic and the Ni phase. The latter plays an important role in the dissociative chemisorption of hydrogen. Under milling the hydrogen uptake and the hydriding kinetics also depend on the intensity of the milling processing, IM (watt g−1), with the absorption rate increasing exponentially with IM. The mechanical treatment was found effective even when thermodynamic absorption reached saturation level. Hydriding rates, mechanochemical gains, and instantaneous mechanochemical yields (mol J−1) were used to compare the processes on an absolute scale and to spotlight possible mechanisms controlling kinetics trends and absorbing features under milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schlapbach, A. Percheron-Guegan, J.M. Welter, T.B. Flanagan, W.A. Oataes, K. Yvon, P. Fischer, M. Gupta, R. Griessen, R. Riesterer, G. Wiesinger, and G. Hilscher: Hydrogen in Intermetallic Compounds I & II, Topics in Applied Physics, Vol. 63, 67, edited by L. Schlapbach (Springer-Verlag, Berlin, Germany, 1988, 1992).

    Google Scholar 

  2. J. Pettersson and O. Hjortsberg: Hydrogen storage alternatives–a technological and economic assessment, KFB-Kommunikationsforsknings- beredningen, Stockholm, KFBs DNR Report 1998-0047, Volvo Tecnisk Utueckling AB, Stockholm, 1999.

    Google Scholar 

  3. M. Conte, A. Iacobazzi, M. Ronchetti, and R. Vellone: Hydrogen economy for a sustainable development: State of the art and technical perspectives. J. Power Sources 100, 171 (2001).

    Article  CAS  Google Scholar 

  4. P. Dantzer: Properties of intermetallic compounds suitable for hydrogen storage applications. Mater. Sci. Eng. A 329, 313 (2002).

    Article  Google Scholar 

  5. Proc. 8th Int. Symp. on Metal Hydrogen Systems, Fundamentals and Applications (MH2002), edited by A. Percheron-Guegan, and M. Gupta. J. Alloys Compd. 356–357, 1 (2003).

  6. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  7. S. Orimo and H. Fujii: Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: A review. Intermetallics 6, 185 (1998).

    Article  CAS  Google Scholar 

  8. A. Zaluska, L. Zaluski, and J.O. Strom-Olsen: Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72, 157 (2001).

    Article  CAS  Google Scholar 

  9. J. Huot: Nanocrystalline materials for hydrogen storage. In Nanoclusters and Nanocrystals, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2003), pp. 53–85.

    Google Scholar 

  10. A. Stepanov, E. Ivanov, I. Konstanchuk, and Y. Boldyrev: Hydriding properties of mechanical alloys Mg-Ni. J. Less-Common Met. 131, 89 (1987).

    Article  CAS  Google Scholar 

  11. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A. 21, 2333 (1990).

    Article  Google Scholar 

  12. K. Aoki, H. Aoyagi, A. Memezawa, and T. Masumoto: Effect of ball milling on the hydrogen absorption rate of FeTi and Mg2Ni compounds. J. Alloys Compd. L7–L9, 203 (1994).

    Google Scholar 

  13. Y. Chen and J.S. Williams: Formation of metal hydrides by mechanical alloying. J. Alloys Compd. 217, 181 (1995).

    Article  CAS  Google Scholar 

  14. L. Zaluski, A. Zaluska, and J.O. Strom-Olsen: Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloys Compd. 217, 245 (1995).

    Article  CAS  Google Scholar 

  15. M.L. Wasz and R.B. Schwarz: Structure and properties of metal hydrides prepared by mechanical alloying. Mater. Sci. Forum 225–227, 859 (1996).

    Article  Google Scholar 

  16. J. Huot, G. Liang, and R. Schulz: Mechanically alloyed metal hydride systems. Appl. Phys. A 72, 187 (2001).

    Article  CAS  Google Scholar 

  17. J. Weissmuller and C. Lemier: Lattice constant of solid solution microstructure: The case of nanocrystalline PdH. Phys. Rev. Lett. 82, 213 (1999).

    Article  CAS  Google Scholar 

  18. R. Shulz, G. Liang, and J. Huot: Hydrogen sorption in mechanically alloyed nanocrystalline and disordered materials. In Materials Science: Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modelling, Proc. 22 Riso Int. Symp., edited by A.R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pedersen, and J.A. Wert (Riso National Laboratory, Roskilde, Denmark, 2001), p. 141.

    Google Scholar 

  19. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  20. P. Yu. Butyagin: Mechanochemical reactions of solids with gases. Reactivity of Solids 1, 345 (1986).

    Article  Google Scholar 

  21. G. Cocco, G. Mulas, and L. Schiffini: Mechanical alloying and reactive milling. Mater. Trans. JIM 36–2, 150 (1995).

    Article  Google Scholar 

  22. P.Yu. Butyagin and I.K. Pavlichev: Determination of energy yield of mechanochemical reactions. Reactivity of Solids 1, 361 (1986).

    Article  CAS  Google Scholar 

  23. G. Mulas, L. Schiffini, and G. Cocco: Impact frequency and energy transfer in milling processes: An experimental approach. Mater. Sci. Forum 225–227, 237 (1996).

    Article  Google Scholar 

  24. G. Heinicke: Tribochemistry (Akademie-Verlag, Berlin, Germany, 1984), pp. 97–180.

    Google Scholar 

  25. V. Ponec and G.C. Bond: Catalysis by Metals and Alloys, Studies in Surface Science and Catalysis, edited by B. Delmon and J.T. Yates (Elsevier, Amsterdam, The Netherlands, 1995), pp. 175–218.

  26. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  27. L. Lutterotti and S. Gialanella: X-ray diffraction characterization of heavily deformed metallic specimens. Acta Mater. 46, 101 (1998).

    Article  CAS  Google Scholar 

  28. P.G. McCormick, H. Huang, M.P. Dallimore, J. Ding, and J. Pan: The dynamics of mechanical alloying. In Mechanical Alloying for Structural Applications, edited by J.J. deBarbadillo, F.H. Froes, and R. Schwarz (Proc. 2nd Int. Conf. Mechanical Alloying for Structural Applications, Sept. 1993, Vancouver, Canada), p. 45.

    Google Scholar 

  29. M. Magini and A. Iasonna: Energy transfer in mechanical alloying. Mater. Trans. JIM 36, 123 (1995).

    Article  CAS  Google Scholar 

  30. M. Abdellaoui and E. Gaffet: The physics of mechanical alloying in a planetary mill: Mathematical treatment. Acta Metall. Mater. 43, 1087 (1995).

    Article  CAS  Google Scholar 

  31. D. Maurice and T.H. Courtney: Milling dynamics: Part II: Dynamics of a SPEX mill and a one-dimensional mill. Metall. Mater. Trans. A 27, 1973 (1996).

    Article  Google Scholar 

  32. F. Delogu, M. Monagheddu, G. Mulas, L. Schiffini, and G. Cocco: Impact characteristics and mechanical alloying processes by ball milling: Experimental evaluation and modelling outcomes. Int. J. Non-equilibrium Proc. 11, 235 (2000).

    CAS  Google Scholar 

  33. E.M. Gutman: Mechanochemistry of Materials (Cambridge International Science Publishing, Cambridge, U.K., 1998), pp. 39–44.

    Google Scholar 

  34. S. Orimo and H. Fujii: Materials science of Mg-Ni-based new hydrides. Appl. Phys. A 72, 167 (2001).

    Article  CAS  Google Scholar 

  35. G. Mulas, L. Conti, G. Scano, L. Schiffini, and G. Cocco: Mechanically driven CO hydrogenation over NiZr amorphous catalysts. Mater. Sci. Eng. A 181, 1085 (1994).

    Article  CAS  Google Scholar 

  36. L.E.A. Berlouis, E. Cabrera, E. Hall-Barientos, P.J. Hall, S.B. Dodd, S. Morris, and M.A. Imam: Thermal analysis investigation of hydriding properties of nanocrystalline Mg-Ni and Mg- Fe–based alloys prepared by high-energy ball milling. J. Mater. Res. 16, 45 (2001).

    Article  CAS  Google Scholar 

  37. E. Ivanov, I. Konstanchuk, A. Stepanov, and V. Boldyrev: Magnesium mechanical alloys for hydrogen storage. J. Less-Common Met. 131, 25 (1987).

    Article  CAS  Google Scholar 

  38. B. Tanguy, J.L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller: Amelioration des conditions de synthèse de l’hydrure de Mg a l’aide d’adjuvants. Mater. Res. Bull. 11, 1441 (1976).

    Article  CAS  Google Scholar 

  39. L. Zaluski, A. Zaluska, P. Tessier, J.O. Strom-Olsen, and R. Schulz: Catalyitc effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi. J. Alloys Compd. 217, 295 (1995).

    Article  CAS  Google Scholar 

  40. F. Bernard, F. Charlot, E. Gaffet, and N.J. Niepce: Optimization of MASHS parameters to obtain a nanometric FeAl intermetallic. Int. J. Self-Propag. High-Temp. Synth. 7, 233 (1998).

    CAS  Google Scholar 

  41. F. Delogu, L. Schiffini, and G. Cocco: The invariant laws of the amorphization process by mechanical alloying. Philos. Mag. A 81, 1917 (2001).

    Article  CAS  Google Scholar 

  42. M. Monagheddu, S. Doppiu, C. Deidda, and G. Cocco: The selfcombustion of structurally co-deformed powder mixtures: A direct view of the process. J. Phys. D, Appl. Phys. 36, 1917 (2003).

    Article  CAS  Google Scholar 

  43. L. Lutterotti, R. Ceccato, R. Dal Maschio, and E. Pagani: Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater. Sci. Forum 278, 87 (1998).

    Article  Google Scholar 

  44. V.V. Boldyrev, M. Bulens, and B. Delmon: The Control of the Reactivity of Solids (Elsevier, Amsterdam, The Netherlands, 1979), p. 20.

    Google Scholar 

  45. J. Bloch and M.H. Mintz: Kinetics and mechanism of metal hydrides formation, A review. J. Alloys Compd. 253, 529 (1997).

    Article  Google Scholar 

  46. M.H. Mintz and J. Bloch: Evaluation of the kinetics and mechanisms of hydriding reactions. Prog. Solid. State Chem. 16, 163 (1985).

    Article  CAS  Google Scholar 

  47. J.R. Anderson: Structure of Metallic Catalysts (Academic Press, London, U.K., 1975), p. 296.

    Google Scholar 

  48. J.M. Thomas and W.J. Thomas: Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997), pp. 65–144.

    Google Scholar 

  49. P.Yu. Butyagin: Active states in mechanochemical reactions. Sov. Sci. Rev. B Chem. 14, 1 (1989).

    Google Scholar 

  50. R.A. Dunlap, D.A. Small, and G.R. Mackay: Hydriding reactions induced by ball milling in group IV and V transition metals. J. Mater. Sci. Lett. 18, 881 (1999).

    Article  CAS  Google Scholar 

  51. F. Delogu and G. Cocco: Phase transformation kinetics in immiscible Ag-Cu and Co-Cu systems under mechanical processing conditions. (submitted).

  52. C. Deidda, F. Delogu, F. Maglia, U. Anselmi-Tamburini, and G. Cocco: Mechanical processing and self-sustaining hightemperature synthesis of TiC powders. Mater. Sci. Eng. A 375, 800 (2004).

    Article  CAS  Google Scholar 

  53. G.B. Shaffer and J.S. Forrester: The influence of collision energy and strain accumulation on the kinetics of mechanical alloying. J. Mater. Sci. 32, 3157 (1997).

    Article  Google Scholar 

  54. L. Li, T. Akiyama, and J. Yagi: Hydrogen storage alloy of Mg2NiH4 hydride produced by hydriding combustion synthesis from powder of mixture metal. J. Alloys Compd. 308, 98 (2000).

    Article  CAS  Google Scholar 

  55. Z.A. Munir and U. Anselmi-Tamburini: Self-propagating exothermic reactions: The synthesis of high. temperature materials by combustion. Mater. Sci. Rep. 3, 227 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cocco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulas, G., Schiffini, L. & Cocco, G. Mechanochemical study of the hydriding properties of nanostructured Mg2Ni–Ni composites. Journal of Materials Research 19, 3279–3289 (2004). https://doi.org/10.1557/JMR.2004.0417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0417

Navigation