Skip to main content
Log in

Preparation and characterization of Sr0.09Ce0.91O1.91, SrCeO3, and Sr2CeO4 by glycine–nitrate combustion: Crucial role of oxidant-to-fuel ratio

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The title compositions were prepared by the gel-combustion process using glycine as the fuel and the corresponding metal nitrates as oxidants. The powders after calcination at 600 °C were characterized by x-ray diffraction for phase identification. The lattice parameters were refined by least squares method for each of the title compounds. Sr0.09Ce0.91O1.91 could be prepared in situ, that is, without any further external heating at higher temperatures, whereas phase pure SrCeO3 and Sr2CeO4 could be prepared only after calcination at 950 °C for 3 h. Sr0.09Ce0.91O1.91 was prepared using three different oxidant-to-fuel ratios: the fuel-deficient ratio, the propellant chemistry (stoichiometric) ratio, and the fuel-excess ratio. The crystallite size as calculated by x-ray line broadening was found to be 13 nm, 20 nm, and 42 nm for the products from fuel-deficient, propellant, and fuel-excess ratios, respectively. It was found that the extreme fuel-deficient ratio of 1:0.5 failed to give phase pure Sr0.09Ce0.91O1.91. The transmission electron microscopy studies showed that majority of the particles were in the range 80–100 nm and 200–250 nm for SrCeO3 and Sr2CeO4, respectively. The compositional characterization was done by energy dispersive x-ray. A careful control of the oxidant-to-fuel ratio was found to be necessary to get the desired products, due to their different thermodynamic stabilities. Thus, the versatility of combustion process in synthesizing the products with different thermodynamic stabilities has been shown, which was hitherto unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Longo, D. Minichelli, and F. Ricciardiello: Phase equilibrium diagrams for the systems CeO2-CaO, CeO2-SrO, and CeO2-BaO. Sci. Ceram. 11, 171 (1981).

    CAS  Google Scholar 

  2. S.V. Chavan and A.K. Tyagi: Sub-solidus phase equilibria in CeO2-SrO system. Thermochim. Acta 390, 79 (2002).

    Article  CAS  Google Scholar 

  3. E.K. Keler, N.A. Godina, and A.N. Kalinina: The reaction of cerium dioxide with oxides of the alkaline earth metals. Zh. Neorg. Khim. 1, 2556 (1956).

    CAS  Google Scholar 

  4. M.D. Mastromonaco, I. Barbariol, and A. Cocco: Solid state reactions of cerium dioxide with alkaline earth metal oxides, electrical conductivity and structure of the phases present in the system. Ann. Chim. 59, 465 (1969).

    Google Scholar 

  5. M. Preda and R. Dinescu: Thermal equilibria in the binary systems MgO-CeO2, CaO-CeO2, SrO-CeO2, BaO-CeO2. Revue Roumaine de Chimie 21, 1023 (1976).

    CAS  Google Scholar 

  6. I. Naray-szabo: The perovskite-structure family. Muegyetemi Kozlemenyek 1, 30 (1947).

    Google Scholar 

  7. A.J. Smith and A.J.E. Walch: Some mixed metal oxide of perovskite structure. Acta Crystallogr. 13, 653 (1960).

    Article  CAS  Google Scholar 

  8. A. Cocco: System cerium oxide-strontium oxide and structure of the phases present. Univ. Studi Trieste, Fac. Ing., Ist. Chim. Appl. No 22, (1966).

    Google Scholar 

  9. A. Hoffmann and Z. Physik: Compound with perovskite structure. Chem. B 28, 65 (1935).

    Google Scholar 

  10. A.E. Solov’eva and A.M. Gavrish: Izv. Akad. Nauk SSSR. Neorg. Mater. 10, 469 (1974).

    Google Scholar 

  11. M. Yoshimura, T. Nakamura, and T. Sata: Preparation and lattice distortion of perovskite–type compounds A2+R4+O3 (A = Ba, Sr; R = Ce, Pr, Tb). Chem. Lett. 9, 923 (1973).

    Article  Google Scholar 

  12. S.F. Pal’guev and Z.S. Volchenkova: Electrical conductivity of solid oxides IV systems CeO2-BeO, CeO2-MgO, CeO2-CaO, CeO2-SrO, CeO2-BaO. Tr. Inst. Elektrokhim. Akad. Nauk SSSR. Ural’sk. Filial. 2, 157 (1961).

    Google Scholar 

  13. A.D. Neuimin and S.F. Pal’guev: Electric conductance and its nature in the systems. CeO2-BeO, CeO2-MgO, CeO2-CaO, CeO2- SrO and CeO2-BaO. Tr. Inst. Elektrokhim. Akad. Nauk SSSR. Ural’sk. Filial. 3, 141 (1962).

    Google Scholar 

  14. V.N. Strekalovskii, G.V. Burov, S.F. Pal’guev, Z.S. Volchenkova, and V.A. Samarina: Connection of electric and structural properties in the system CeO2-SrO. Tr. Inst. Elektrokhim. Akad. Nauk SSSR. Ural’sk. Filial. 3, 165 (1962).

    Google Scholar 

  15. N. Bonanos, B. Ellis, and M.N. Mahmood: Oxide ion conduction in ytterbium–doped strontium cerate. Solid State Ionics 28–30, 579 (1988).

    Article  Google Scholar 

  16. H. Iwahara, H. Uchinda, and N. Maeda: High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J. Power Sources 7, 193 (1982).

    Article  Google Scholar 

  17. H. Iwahara, H. Uchinda, and I. Yamasaki: High temperature steam electrolysis using SrCeO3-based proton conductive solid electrolyte. Int. J. Hydrogen Energy 12, 73 (1987).

    Article  CAS  Google Scholar 

  18. R. Jens and N. Kurt: Crystal structure of the high temperature protonic conductor SrCeO3. J. Mater. Chem. 4, 867 (1994).

    Article  Google Scholar 

  19. L. Van Pieterson, S. Soverna, and A. Meijerink: On the nature of the luminescence of Sr2CeO4. J. Electrochem. Soc. 147, 4688 (2000).

    Article  Google Scholar 

  20. M.D. Mastromonaco: Ann. Chim. 59, 465 (1969).

    Google Scholar 

  21. H. Kleykamp: The chemical state of the fission products in oxide fuel. J. Nucl. Mater. 131, 221 (1985).

    Article  CAS  Google Scholar 

  22. Y.W. Lee, H.S. Kim, S.H. Kim, C.Y. Young, S.H. Na, G. Ledergerber, P. Heimgarbner, M. Pouchon, and M. Burghartz: Preparation of simulated inert matrix fuel with different powders by dry milling method. J. Nucl. Mater. 274, 7 (1999).

    Article  CAS  Google Scholar 

  23. C. Ganguly: ThO2 based Fuels for PHWR’s: Fabrication, Characterization and Test Irradiation, IInd Int. Conf. CANDU Fuel, Pembroke, Ontaria, Canada, ed. I.J. Hasting, (Canadian Nuclear Society, Ontario, Canada), p. 398 (1989).

  24. R. Sankar and G.V. Subbarao: Eu3+ luminescence, Ce4+→Eu3+ energy transfer, and white-red light generation in Sr2CeO4. J. Electrochem. Soc. 147, 2773 (2000).

    Article  CAS  Google Scholar 

  25. N.M. Sammes and Z. Cai: Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics 100, 39 (1997).

    Article  CAS  Google Scholar 

  26. W. Huang, P. Shuk, and M. Greenblattt: Properties of sol-gel prepared Ce1-xSmxO2-x/2 solid electrolyte. Solid State Ionics 100, 23 (1997).

    Article  CAS  Google Scholar 

  27. M. Yoshimura and W. Suchanek: In situ fabrication of morphology–controlled advanced ceramic materials by soft solution processing. Solid State Ionics 98, 197 (1997).

    Article  CAS  Google Scholar 

  28. J.J. Kingsley, K. Suresh, and K.C. Patil: Combustion synthesis of fine–particle metal aluminates. J. Mater. Sci. 25, 1305 (1990).

    Article  CAS  Google Scholar 

  29. V.M. Ferreira, F. Azough, J.L. Baptista, and R. Feer: Magnesium titanate microwave dielectric ceramics. Ferroelect. 133, 127 (1992).

    Article  CAS  Google Scholar 

  30. J.J. Kingsley and K.C. Patil: A novel combustion process for the synthesis of fine particle _–alumina and related oxide materials. Mater. Lett. 6, 427 (1988).

    Article  CAS  Google Scholar 

  31. S. Bhaduri, S.B. Bhaduri, and E. Zhou: Auto ignition synthesis and consolidation of Al2O3-ZrO2 nano/nano composite powders. J. Mater. Res. 13, 156 (1998).

    Article  CAS  Google Scholar 

  32. L.R. Pederson, L.A. Chick, and G.J. Exarhos: Metal oxide ceramic powders and thin films and the manufacturer. U.S. Patent No. 5114702, (May 19, 1992).

    Google Scholar 

  33. S.S. Manoharan and K.C. Patil: Combustion synthesis of metal chromite powders. J. Am. Ceram. Soc. 75, 1012 (1992).

    Article  CAS  Google Scholar 

  34. S.R. Jain, K.C. Adiga, and V.R. Pai Verneker: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combus. Flame 40, 71 (1981).

    Article  CAS  Google Scholar 

  35. R.D. Purohit and A.K. Tyagi: Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J. Mater. Chem. 12, 312 (2002).

    Article  CAS  Google Scholar 

  36. R.D. Purohit, B.P. Sharma, K.T. Pillai, and A.K. Tyagi: Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36, 2711 (2001).

    Article  CAS  Google Scholar 

  37. R.D. Purohit, A.K. Tyagi, M.D. Mathews, and S. Saha: Combustion synthesis and bulk thermal expansion studies of Ba and Sr thorates. J. Nucl. Mater. 280, 51 (2000).

    Article  CAS  Google Scholar 

  38. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, and G.J. Exarhos: Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, S.V., Tyagi, A.K. Preparation and characterization of Sr0.09Ce0.91O1.91, SrCeO3, and Sr2CeO4 by glycine–nitrate combustion: Crucial role of oxidant-to-fuel ratio. Journal of Materials Research 19, 3181–3188 (2004). https://doi.org/10.1557/JMR.2004.0411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0411

Navigation