Skip to main content
Log in

Nature of contact deformation of TiN films on steel

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation experiments were carried out on a columnar ~1.5-μm-thick TiN film on steel using a conical indenter with a 5-μm tip radius. Microstructural examination of the contact zone indicates that after initial elastic deformation, the deformation mechanism of the TiN is dominated by shear fracture at inter-columnar graun boundaries of the TiN film. A simple model is proposed whereby the applied load is partitioned between a deforming TiN annulus and a central expanding cavity in the steel substrate. It is possible to obtaun a good fit to the experimental load–displacement curves with only one adjustable parameter, namely the inter-columnar shear fracture stress of the TiN film. The implication of results in the context of the performance of TiN films in service is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jonsson and S. Hogmark: Hardness measurements of thin films. Thin Solid Films 114, 257 (1984).

    Article  Google Scholar 

  2. P.J. Burnett and S. Rickerby: The mechanical properties of wearresistant coatings: I: Modelling of hardness behaviour. Thin Solid Films 148, 41 (1987).

    Article  CAS  Google Scholar 

  3. P.J. Burnett and S. Rickerby: The mechanical properties of wearresistant coatings: II: Experimental studies and interpretation of hardness. Thin Solid Films 148, 51 (1987).

    Article  CAS  Google Scholar 

  4. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  5. A.J. Whitehead and T.F. Page: Nanoindentation studies of thin film coated systems. Thin Solid Films 220, 227 (1992).

    Article  Google Scholar 

  6. X. Chen and J.J. Vlassak: A Finite Element Study on the Nanoindentation of Thin Films, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001) Q1.3.1.

    Google Scholar 

  7. H. Buckle: The Science of Hardness Testing and Its Research Applications, in Science of Hardness Testing and Its Research Applications, edited by J.H. Westbrook and H. Conrad (ASM, Metals Park, OH, 1973), p. 453.

    Google Scholar 

  8. P.J. Burnett and T.F. Page: Surface softening in silicon by ion implantation. J. Mater. Sci. 19, 845 (1984).

    Article  CAS  Google Scholar 

  9. P.M. Sargent: Use of indentation size effect on microhardness for materials characterization. In Microindentation Techniques in Material Science and Engineering, edited by P. Blau and B.R. Lawn (ASTM Spec. Tech. Publ., Philadelphia, PA, 1984), p. 160.

    Google Scholar 

  10. C. Knight, A.J. Whitehead, and T.F. Page: Nanoindentation experiments on some amorphous hydrogenated carbon (a-C:H) thin films on silicon. J. Mater. Sci. 27, 3939 (1992).

    Article  CAS  Google Scholar 

  11. E. Weppelmann and M.V. Swaun: Investigation of the stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters. Thin Solid Films 286, 111 (1996).

    Article  CAS  Google Scholar 

  12. E. Weppelmann, M. Wittling, M.V. Swaun, and D. Munz: Indentation cracking of brittle thin films on brittle substrates. In Fracture Mechanics of Ceramics 12, edited by R.C. Bradt (Plenum Press, NY, 1996).

  13. M. Wittling, A. Bendavid, P.J. Martin, and M.V. Swaun: Influence of thickness and substrate on the hardness and deformation of TiN films. Thin Solid Films 270, 283 (1995).

    Article  CAS  Google Scholar 

  14. M.V. Swaun and J. Mencik: Mechanical property characterization of thin films using spherical tipped indenters. Thin Solid Films 253, 204 (1994).

    Article  Google Scholar 

  15. D.F. Bahr, J.W. Hoehn, N.R. Moody, and W.W. Gerberich: Adhesion and acoustic emission analysis of faulures in nitride films with a metal interlayer. Acta Mater. 45, 5163 (1997).

    Article  CAS  Google Scholar 

  16. M.R. Begley, A.G. Evans, and J.W. Hutchinson: Spherical impression of thin elastic films on elastic–plastic substrates. Inter. Jl. Solid Struc. 36, 2773 (1999).

    Article  Google Scholar 

  17. J.S. Wang, Y. Sugimura, A.G. Evans, and W.K. Tredway: The mechanical performance of DLC films on steel substrates. Thin Solid Films 325, 163 (1998).

    Article  CAS  Google Scholar 

  18. R.M. Souza, G.G.W. Mustoe, and J.J. Moore: Finite-element modeling of the stresses and fracture during the indentation of hard elastic films on elastic-plastic aluminum substrates. Thin Solid Films 355-356, 303 (1999).

    Article  CAS  Google Scholar 

  19. S. Sriram, R. Narasimhan, and S.K. Biswas: A numerical fracture analysis of indentation into thin hard films on soft substrates. Eng. Frac. Mech. 70, 1323 (2003).

    Article  Google Scholar 

  20. T. Matsue, T. Hanabusa, and Y. Ikeuchi: Residual stress and its thermal relaxation in TiN films. Thin Solid Films 281-282, 344 (1996).

    Article  CAS  Google Scholar 

  21. Z-H. Xie, P. Munroe, R.J. Moon, and M. Hoffman: Characterization of surface contact-induced fracture in ceramics using a focused ion beam miller. Wear 255, 651 (2003).

    Article  CAS  Google Scholar 

  22. Z-H. Xie, M. Hoffman, P. Munroe, and R.J. Moon: (2004, unpublished).

  23. E. Torok, A.J. Perry, L. Chollet, and W.D. Sproul: Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 153, 37 (1987).

    Article  Google Scholar 

  24. H.D. Conway and P.A. Engel: Contact stresses in slabs due to round rough indenters. Int. J. Mech. Sci. 11, 709 (1969).

    Article  Google Scholar 

  25. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

    Book  Google Scholar 

  26. R. Hill, The Mathematical Theory of Plasticity (Clarendon, Oxford, U.K., 1950).

    Google Scholar 

  27. S. Bhowmick, A.N. Kale, V. Jayaram, and S.K. Biswas: Contact damage in TiN coatings on steel. Thin Solid Films 436, 250 (2003).

    Article  CAS  Google Scholar 

  28. S.L. Lee, S. Wuttiphan, X. Hu, S.K. Lee, and B.R. Lawn: Contactinduced transverse fractures in brittle layers on soft substrates. A study on silicon nitride bilayers. J. Am. Ceram. Soc. 81, 571 (1998).

    Article  CAS  Google Scholar 

  29. K.S. Lee, S.K. Lee, D.K. Kim, and B.R. Lawn: Contact damage and strength degradation in brittle/quasi-plastic silicon nitride bilayers. J. Am. Ceram. Soc. 81, 2394 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jayaram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, S., Xie, ZH., Hoffman, M. et al. Nature of contact deformation of TiN films on steel. Journal of Materials Research 19, 2616–2624 (2004). https://doi.org/10.1557/JMR.2004.0339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0339

Navigation