Skip to main content
Log in

New relationship between Young’s modulus and nonideally sharp indentation parameters

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Both analysis and numerical calculations have been carried out to investigate the relationship between Young’s modulus and nonideally sharp indentation parameters. The results confirm that there exists an approximate one-to-one correspondence between the ratio of nominal hardness/reduced Young’s modulus (Hn/Er) and the ratio of elastic work/total work (We/W) for any definite bluntness ratio (Δh/hm) of a nonideally sharp indenter. Based on this relationship, the Young’s modulus of the indented material can be determined just from the values of Hn, We, and W, which are directly measurable quantities in an indentation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pethica, R. Hutchings, and W.C. Oliver: Hardness measurement at penetration depth as small as 20nm. Philos. Mag. A 48, 593 (1983).

    Article  CAS  Google Scholar 

  2. J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille: Vickers indentation curves of magnesium oxide (MgO). J. Tribology 106, 43 (1984).

    Article  CAS  Google Scholar 

  3. D. Newey, M.A. Wilkens, and H.M. Pollock: An ultra-low-load penetration hardness tester. J. Phys. E. Sci. Instrum. 15, 119 (1982).

    Article  CAS  Google Scholar 

  4. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

  5. G.M. Pharr, W.C. Oliver, and F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  6. Y-T. Cheng, Z. Li, and C-M. Cheng: Scaling approach to modeling indentation measurements, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q1.1.

  7. Y-T. Cheng and C-M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  8. A.E. Giannakopoulos and S. Suresh: Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater. 40, 1191 (1999).

  9. T.A. Venkatesh, K.J. Van Vliet, A.E. Giannakopoulos, and S. Suresh: Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Mater. 42, 833 (2000).

    Article  CAS  Google Scholar 

  10. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  11. W.Y. Ni, Y.T. Cheng, C.M. Cheng, and D.S. Grummon: An energy-based method for analyzing instrumented spherical indentation experiments. J. Mater. Res. 19, 149 (2004).

    Article  CAS  Google Scholar 

  12. Y-T. Cheng and C-M. Cheng: Further analysis of indentation loading curves: effect of tip rounding on mechanical property measurements. J. Mater. Res. 13, 1059 (1998).

  13. W. Yu and J.P. Blanchard: An elastic-plastic indentation model and its solutions. J. Mater. Res. 11, 2358 (1996).

  14. S. Timoshenko and J.N. Goodier: Theory of Elasticity (McGraw Hill, New York, 1951).

  15. J.L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-Manuel: Nanoindentation with a surface force apparatus, in Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures, edited by M.A. Nastasi, D.M. Parkin, and H. Gleiter (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993).

  16. D. Tabor, The Hardness of Metals (Claredon Press, Oxford, U.K., 1951).

  17. J. Alcala, A.E. Giannakopoulos, and S. Suresh: Continuous measurements of load-penetration curves with spherical microindenters and the estimation of mechanical properties. J. Mater. Res. 13, 1390 (1998).

    Article  CAS  Google Scholar 

  18. ABAQUS: Version 6.2 (Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, 2001).

  19. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  20. S.Dj. Mesarovic and N.A. Fleck: Spherical indentation of elasticplastic solids. Proc. R. Soc. London. 455, 2707 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wo Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D., Ong, C.W. & Wong, S.F. New relationship between Young’s modulus and nonideally sharp indentation parameters. Journal of Materials Research 19, 2144–2151 (2004). https://doi.org/10.1557/JMR.2004.0274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0274

Navigation